
Vancouver, BC / July 2002 kr_fair_01.pdf Komal Rathi 1

Fairness state machines

Komal Rathi
(krathi@lanterncom.com)

IEEE 802.17 Plenary Meeting
Vancouver, BC, Canada

July 2002

Vancouver, BC / July 2002 kr_fair_01.pdf Komal Rathi 2

Motivation

• State machines are needed to properly describe the
behavior of the MAC

• They help identify “holes” or missing/inconsistent
functionalities that may not be clear from a textual
description

• State machines are now included in the proposed rewrite
for clause 9

• This presentation covers those state machines and
identifies problems with them that need to be addressed

Vancouver, BC / July 2002 kr_fair_01.pdf Komal Rathi 3

Receive fairness message

IDLE

MULTI CHOKE MESSAGE RECEIVED

Generate MAC_control.indicate() to client;

TxMuxN:MA_DATA.indicate(PT == 0x02) &&
fairness_msg_type == MULTI_CHOKE

SINGLE CHOKE MESSAGE RECEIVED

downstreamCongested = FALSE;
if (msg.SA != LOCAL_SA)

rcvd_advertised_rate = msg.control_value;
rcvd_SA = msg.SA;
rcvd_TTL = msg.TTL
if (rcvd_fair_rate != FULL_RATE)

downstreamCongested = TRUE;

TxMuxN:MA_DATA.indicate(PT == 0x02) &&
fairness_msg_type == SINGLE_CHOKE

BEGIN

UCT UCT

Vancouver, BC / July 2002 kr_fair_01.pdf Komal Rathi 4

Congestion detection and local fair rate calculation
(aggressive mode)

INIT

unreserved_rate = line_rate -
reserved_rate;
high_threshold = STQ_size / 4;
low_threshold = STQ_size / 8;

UNCONGESTED

localCongested = FALSE;
local_fair_rate =
unreserved_rate;
norm_local_fair_rate =
local_fair_rate / NORMCOEF;

UCT

BEGIN &&
(mode == AGGRESSIVE)

CONGESTED

localCongested = TRUE;
local_fair_rate = lp_add_rate;
norm_local_fair_rate =
local_fair_rate / NORMCOEF;

aging_interval_expired &&
(((transitPath == DUAL) && ((lp_nr_xmit_rate > unreserved_rate) || (STQ_depth >

low_threshold))) ||
((transitPath == MONO) && ((lp_nr_xmit_rate > unreserved_rate) || (lp_nr_xmit_rate >

low_threshold) || (class_B_access_delay_timer_expired) ||
(class_C_access_delay_timer_expired))))

aging_interval_expired &&
!(((transitPath == DUAL) && ((lp_nr_xmit_rate > unreserved_rate) || (STQ_depth >

low_threshold))) ||
((transitPath == MONO) && ((lp_nr_xmit_rate > unreserved_rate) || (lp_nr_xmit_rate >

low_threshold) || (class_B_access_delay_timer_expired) ||
(class_C_access_delay_timer_expired))))

Vancouver, BC / July 2002 kr_fair_01.pdf Komal Rathi 5

Congestion detection and local fair rate calculation
(conservative mode)

JUST ENTERED CONGESTION

localCongested = TRUE;
local_fair_rate = unreserved_rate
/ active_stations * WEIGHT;
norm_local_fair_rate =
local_fair_rate / NORMCOEF;
resetRTTCounter();

RAMP UP

local_fair_rate = min(unreserved_rate,
local_fair_rate) + (unreserved_rate -
local_fair_rate) / RAMPCOEF;
resetRTTCounter();

UNCONGESTED

localCongested = FALSE;
local_fair_rate =
unreserved_rate;
norm_local_fair_rate =
local_fair_rate / NORMCOEF;

RAMP DOWN

local_fair_rate = local_fair_rate -
local_fair_rate / RAMPCOEF;
resetRTTCounter();

CONGESTED

aging_interval_expired &&
(((transitPath == DUAL) && ((lp_nr_xmit_rate > unreserved_rate) || (STQ_depth >

low_threshold))) ||
((transitPath == MONO) && ((lp_nr_xmit_rate > unreserved_rate) || (lp_nr_xmit_rate >

low_threshold) || (class_B_access_delay_timer_expired) ||
(class_C_access_delay_timer_expired))))

aging_interval_expired &&
(local_fair_rate > unreserved_rate)

UCT

aging_interval_expired

aging_interval_expired &&
(add_rate + fwd_rate < low_threshold) &&

(RTT worth of intervals have passed)

aging_interval_expired &&
(add_rate + fwd_rate > high_threshold) &&

(RTT worth of intervals have passed)

INIT

unreserved_rate = line_rate -
reserved_rate;
high_threshold = 0.95 *
unreserved_rate;
low_threshold = 0.8 *
unreserved_rate;

BEGIN &&
(mode == CONSERVATIVE)

UCT

UCT

Vancouver, BC / July 2002 kr_fair_01.pdf Komal Rathi 6

Single choke message generation

LOCAL NODE MORE CONGESTED

advertised_fair_rate = norm_local_fair_rate;
msg.SA = LOCAL_SA;

DOWNSTREAM NODE MORE CONGESTED

if (norm_lp_fw_rate_congested > rcvd_fair_rate)
advertised_fair_rate = rcvd_fair_rate;
msg.SA = rcvd_SA;

else
advertised_fair_rate = FULL_RATE;
msg.SA = LOCAL_SA;

NO CONGESTION

advertised_fair_rate = FULL_RATE;
msg.SA = LOCAL_SA;

BEGIN

advertisement_interval_expires && downstreamCongested
&& ((!localCongested) || (rcvd_fair_rate <

norm_local_fair_rate))

advertisement_interval_expires && localCongested &&
((!downstreamCongested) || (rcvd_fair_rate >

norm_local_fair_rate))

advertisement_interval_expires &&
(!downstreamCongested) &&

(!localCongested)

advertisement_interval_expires &&
(!downstreamCongested) &&

(!localCongested)

advertisement_interval_expires &&
downstreamCongested && ((!localCongested) ||

(rcvd_fair_rate < norm_local_fair_rate))

advertisement_interval_expires &&
localCongested && ((!downstreamCongested) ||

(rcvd_fair_rate > norm_local_fair_rate))

Vancouver, BC / July 2002 kr_fair_01.pdf Komal Rathi 7

Multi choke message generation

UNCONGESTED

advertised_rate = FULL_RATE;
msg.SA = LOCAL_SA;

CONGESTED

advertised_rate =
norm_local_fair_rate;
msg.SA = LOCAL_SA;

BEGIN

(10 * advertisement interval) &&
localCongested

(10 * advertisement interval) &&
!localCongested

Vancouver, BC / July 2002 kr_fair_01.pdf Komal Rathi 8

Statistics

IDLE

UPDATE STATISTICS

if (packet.FE == TRUE)
if (packet.src == localSA)

add_rate += packetLength;
if (packet.TTL > TTL_to_congestion)

add_rate_congested += packetLength;
if (packet.src != localSA)

fw_rate += packetLength;
if (packet.TTL > TTL_to_congestion)

fw_rate_congested += packetLength;

if (packet.SC != 0x03)
nr_xmit_rate += packetLength;

UCT

BEGIN

INIT

add_rate = 0;
add_rate_congested = 0;
forward_rate = 0;
forward_rate_congested = 0;
nr_xmit_rate = 0;

packet on outgoing link UCT

BEGIN

DECAY STATISTICS

lp_add_rate = ((LPCOEF-1) * lp_add_rate + add_rate)/LPCOEF;
lp_add_rate_congested = ((LPCOEF-1) * lp_add_rate_congested + add_rate)/LPCOEF;
lp_fw_rate = ((LPCOEF-1) * lp_fw_rate + fw_rate)/LPCOEF;
lp_fw_rate_congested = ((LPCOEF-1) * lp_fw_rate_congested +
forward_rate_congested)/LPCOEF;
lp_nr_xmit_rate = ((LPCOEF-1) * lp_nr_xmit_rate + nr_xmit_rate)/LPCOEF;
norm_lp_fw_rate_congested = lp_fw_rate_congested / NORMCOEF;

add_rate = (add_rate * (AGECOEF-1)) / AGECOEF;
add_rate_congested = (add_rate_congested * (AGECOEF - 1)) / AGECOEF;
fw_rate = (fw_rate * (AGECOEF-1)) / AGECOEF;
fw_rate_congested = (fw_rate_congested * (AGECOEF - 1)) / AGECOEF;
nr_xmit_rate = (nr_xmit_rate * (AGECOEF-1)) / AGECOEF;

aging_interval_expired

Statistics collection

Statistics decay

Vancouver, BC / July 2002 kr_fair_01.pdf Komal Rathi 9

Some questions
• What are the specifics of MAC_control.indicate()?
• What is the reasoning behind the threshold values? How

do these values ensure that the STQ does not overflow?
• What is the reasoning behind Class B and Class C access

delay timer values?
• How does the FCU interact with the MAC data path? How

are the statistics obtained from the data path? How do the
shapers get the needed information from the FCU? How is
the TTL_to_congestion value passed to the rate monitors
in the data path?

