RPR MAC Model

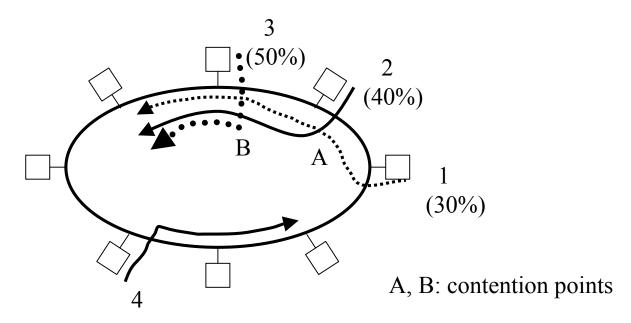
(Contention Resolution and Fairness Issue)

Byoung-Joon (BJ) Lee

March 14, 2001 Hilton Head Island, SC

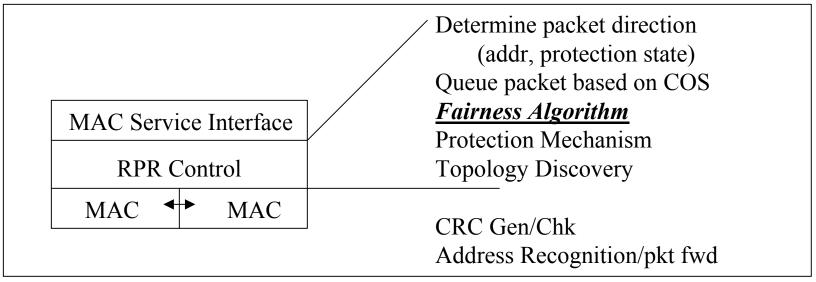
What is the Issue?

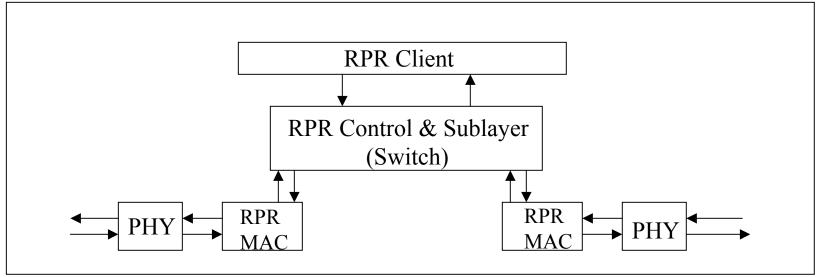
- Fair (or unfair) allocation of ring bandwidth under congestion is a complex problem.
 - Potential for lengthy standardization effort.
 - Also likely have implication on scalability w.r.t. geographical coverage, link speed, and # of nodes.
- Is it an indispensible part of MAC definition, or a system issue which belongs to a vendor differentiation area?



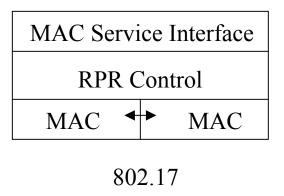
Existing MACs and Fairness

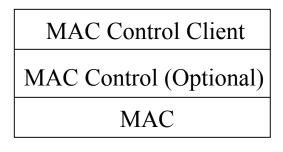
- Traditionally, MAC is to resolve access contention among multiple nodes sharing a common physical transmission medium, thus the name "Medium Access Control"
 - IEEE 802.3 Ethernet does it by CSMA/CD
 - IEEE 802.5 Token Ring by token passing
 - ANSI FDDI by timed token protocol
 - IEEE 802.6 DQDB by generating slots which carry busy/idle status, and distributed queueing with bandwidth balancing mechanism
- In all of the above, "fair" allocation of shared link bandwidth has been part of the MAC.


Contention Resolution and Fairness in RPR



- Is RPR a shared medium?
 - Yes and No, depending on traffic pattern due to spatial reuse
 - Flows 1,2, and 3 form a contention domain, while flow 4 is contention-free
- Consider a case where flows 1, 2, and 3 try to transmit 30, 40, and 50% of the ring bandwidth, respectively.
 - Contention resolution is needed between the ring and host traffic at 'A'
 - Contention resolution also takes the form of fair/unfair bandwidth allocation problem under congestion at 'B'


Revisiting RPR MAC Models Suggested So Far



Comparison with 802.3x MAC Control Layer

802.3x

- In 802.3x, the MAC control sub-layer defines simple flow control for full-duplex operation.
 - Not a shared medium network any more, thus no CSMA/CD.
 - "MAC" is a misnomer, except for the frame format.
 - Each node becomes a bridge.

Comparison with 802.3x MAC Control Layer (cont'd)

- The architecture also allows specifications of alternative flow control mechanisms.
 - Since it "is" effectively a bridge.
- Topology discovery and protection mechanisms optimized for Ethernet switched ring can also be part of MAC control sub-layer in 802.3x?
 - New frame format is required to include ring ID, TTL, etc.
- Since RPR ring segments can be considered as pt-to-pt full-duplex links, similar approach also deserves a hard look.

Summary

- Fair (or unfair) allocation of ring bandwidth under congestion is a complex problem.
 - Potential risk for lengthy standardization effort.
- Architectural approach of 802.3x MAC control sub-layer may provide flexibility, in that the fairness mechanism under congestion can be left as an option?
 - Unlike in the full-duplex switched networks, however, RPR MAC still need contention resolution between the add and ring traffic, at the minimum.
- Efforts need be focused to specify only a minimum set of common functionalities for in-time standard.
 - However, the specification of fairness mechanism should also be sufficiently detailed enough to allow interoperability.

