# Study of Quality of Service Issues in RPR

Sanjay K. Agrawal Luminous Networks

sanjay@luminousnetworks.com

#### **Objectives**

- Type of service requirement in provider networks in metro and core
- Study of congestion control and fairness requirements and solutions
- RPR framework proposal

## Provider Network Type of Service Requirements

- Legacy leased lines
- Voice over IP
- Video services
- Committed Access Rate data service (VLL)
- Over Committed Access Rate data services
- Best effort services

#### Class of Service

- Time sensitive committed class
  - Legacy leased line, Voice over IP, Protected, No degradation on protection
- Time Sensitive committed class
  - Video, Protected, No degradation on protection
- Time insensitive committed class
  - Committed data Services, Protected, No degradation on protection
- Time insensitive over-committed class
  - Over committed data services, degradation on protection
- Best Effort Service
  - Best effort data services, degradation on protection

### Class of Service support

- Bandwidth provisioning maintained on per class basis
- Traffic from one class should not effect the traffic in the other class.

### Issue of Congestion & Fairness

Only necessary in the over-committed class.

### The Problem of Congestion

- Traffic sources: TCP linearly increase their bandwidth usage till resources are exhausted. On packet drop they back off exponentially
- Uncontrolled congestion seriously degrades performance
  - Buffers fill up
  - Packets are dropped, resulting in re-transmissions
  - Result: more packet loss and increased latency
  - Problem builds until throughput collapses
  - 35% link utilization on MAN and WAN links [Caida: www.caida.org]



#### Problem of Fairness

Per node Fairness in the rings



#### Problem of Fairness (cont..)

Per customer/subscriber fairness in the rings



#### Problem of Fairness (cont..)

 Per domain fairness in the rings in Public Transparent LAN services



### Problem of Fairness (cont..)

Per MPLS aggregate fairness in the rings and mesh of rings.



#### Congestion Control & Fairness

- Per Flow Queuing
  - ATM environment
  - Deterministic QoS per flow
  - Serious scaling issues in IP networks
- Per Aggregate Flow Queuing
  - Aggregates based on VPN domain, MPLS labels, nodes, customers.
  - Deterministic QoS per aggregate flow
  - Scaling issue. 1k customers/port, 12 port/line card,
    12 line cards/ chassis, 128 chassis in a ring.
  - Scheduling and congestion control very difficult

### Congestion Control & Fairness

- Per class queuing
  - Scales very nicely
  - Deterministic and statistical QoS per aggregate
  - Scheduling and congestion control relatively simple

## Random Early Detection (RED)

- ◆ RED:
  - Anticipates congestion
  - Slows down traffic before queue overflows
  - Avoids TCP oscillations
  - Maximizes throughput
- RED uses selective packet loss to signal TCP to slow down
- ◆ new RED, Blue



### Random Early Detection



## Problem of Congestion Control & Fairness

- Fairness across flows
- Fairness across responsive and non responsive flows
- Fairness across round trip times (RTT)
- Weighted fairness across aggregates

### Buffering vs. BCN

- Backward Congestion Notification (BCN)
  - Avoids buffering in the intermediate nodes in the rings.
  - Propagates congestion to source nodes.
  - Flow control signaling frequency and span distances may be issue
  - Interaction with upper layer protocols (TCP or any adaptive) may be issue.

#### Buffering

- Avoids internode signaling.
- Well tested
- Requires 50-100ms buffering

### Simplify MAC



## Proposed RPR MAC Implementation



#### Proposed RPR System Architecture



#### Conclusion

- Many service scenarios
- QoS above RPR MAC layer
- Proposal not tied to a particular implementation that addresses only a set of needs.
- Doesn't preclude services of present and future
- Open to innovation and evolution
- Allows vendor differentiation while insuring interoperability