
Copyright © 1997, 1998, 1999, 2000 by the Institute of Electrical and Electronics Engineers, Inc.
345 East 47th Street
New York, NY 10017, USA
All rights reserved.

This is an unapproved draft of a proposed IEEE Standard, subject to change. Permission is hereby granted for IEEE Standards Committee
participants to reproduce this document for purposes of IEEE standardization activities. If this document is to be submitted to ISO or IEC, notification
shall be given to the IEEE Copyright Administrator. Permission is also granted for member bodies and technical committees of ISO and IEC to
reproduce this document for purposes of developing a national position. Other entities seeking permission to reproduce this document for
standardization or other activities, or to reproduce portions of this document for these or other uses must contact the IEEE Standards Department for
the appropriate license. Use of information contained in this unapproved draft is at your own risk.

IEEE Standards Department
Copyright and Permissions
445 Hoes Lane, P.O. Box 1331
Piscataway, NJ 08855-1331 USA

Document Number: IKN-2002-1

Chapter 9, Fairness

March 4, 2002
Harmen R. van As, Arben Lila, Guenter Remsak, Jon Schuringa
Vienna University of Technology, Austria

Email:
harmen.r.van-as@tuwien.ac.at
arben.lila@tuwien.ac.at
guenter.remsak@tuwien.ac.at
jon.schuringa@tuwien.ac.at

Abstract: This text describes the fairness algorithm in a combined greedy and cyclic reservation
MAC protocol for ring networks. It performs at the theoretical fair limits and therefore exhibits
excellent performance in terms of throughput, end-to-end delay, guarantees of service level
agreement, and traffic dynamics. Other major features are: the support of multiple service
classes, the support of heterogeneous link rates, no measurements on the links, no buffer
thresholds, self-adaptive.

mailto:harmen.r.van-as@tuwien.ac.at
mailto:arben.lila@tuwien.ac.at
mailto:guenter.remsak@tuwien.ac.at
mailto:jon.schuringa@tuwien.ac.at

IKN-2002-1 March 2002

IEEE Standards documents are developed within the Technical Committees of the IEEE Societies and the
Standards Coordinating Committees of the IEEE Standards Board. Members of the committees serve
voluntarily and without compensation. They are not necessarily members of the Institute. The standards
developed within IEEE represent a consensus of the broad expertise on the subject within the Institute as
well as those activities outside of IEEE that have expressed an interest in participating in the development
of the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE Standard does not imply that there
are no other ways to produce, test, measure, purchase, market, or provide other goods and services related
to the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the time a standard is approved
and issued is subject to change brought about through developments in the state of the art and comments
received from users of the standard. Every IEEE Standard is subjected to review at least every five years
for revision or reaffirmation. When a document is more than five years old and has not been reaffirmed, it
is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present
state of the art.

Users are cautioned to check to determine that they have the latest edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of
membership affiliation with IEEE. Suggestions for changes in documents should be in the form of a
proposed change of text, together with appropriate supporting comments.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they
relate to specific applications. When the need for interpretations is brought to the attention of IEEE, the
Institute will initiate action to prepare appropriate responses. Since IEEE Standards represent a consensus
of all concerned interests, it is important to ensure that any interpretation has also received the concurrence
of a balance of interests. For this reason IEEE and the members of its technical committees are not able to
provide an instant response to interpretation requests except in those cases where the matter has previously
received formal consideration.

Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE Standards Board
445 Hoes Lane
P.O. Box 1331

Piscataway, NJ 08855-1331

IEEE Standards documents are adopted by the Institute of Electrical and Electronics
Engineers without regard to whether their adoption may involve patents on articles,
materials, or processes. Such adoption does not assume any liability to any patent owner,
nor does it assume any obligation whatever to parties adopting the standards documents.

Page ii Copyright 2002, IEEE. All rights reserved.
 This is an unapproved IEEE Standards Draft, subject to change

IKN-2002-1 March 4, 2002

Status summary

Contacts
Harmen R. van As, Arben Lila, Guenter Remsak, Jon Schuringa
Vienna University of Technology, Austria
Email:
harmen.r.van-as@tuwien.ac.at
arben.lila@tuwien.ac.at
guenter.remsak@tuwien.ac.at
jon.schuringa@tuwien.ac.at

 Copyright 2002, IEEE. All rights reserved. Page iii
 This is an unapproved IEEE Standards Draft, subject to change

mailto:harmen.r.van-as@tuwien.ac.at
mailto:arben.lila@tuwien.ac.at
mailto:guenter.remsak@tuwien.ac.at
mailto:jon.schuringa@tuwien.ac.at

IKN-2002-1 March 2002

Table of contents

Contacts .. iii
Version 1.0 (date) .. vii
Version X.X (date) .. vii

9. Fairness..8
9.1 Introduction ..8
9.2 Fairness Algorithm ...10
9.3 Control Packet ..15

9.3.1 Introduction ..15
9.3.2 Control Packet Format..15
9.3.3 Control Packet Arrival..17
9.3.4 Control Packet Forwarding...19
9.3.5 Control Packet Loss Detection and Recovery ..22

9.4 Calculation Interval and Control Packet Timing ..22

Page iv Copyright 2002, IEEE. All rights reserved.
 This is an unapproved IEEE Standards Draft, subject to change

IKN-2002-1 March 4, 2002

List of figures

Figure 9.1 Global and link fairness on a single ringlet..8
Figure 9.2 Fair station throughputs in case of fairness definition 1 (proportional throttling)..........................9
Figure 9.3 Fair station throughputs in case of fairness definition 2 (throttling related to the number of

flows)...9
Figure 9.4 Fairness of multiple traffic classes ...10
Figure 9.5 Link id’s on both ringlets ...13
Figure 9.6 All flows want to send at link capacity ..14
Figure 9.7 Source-Destination Pairs..16
Figure 9.8 Position of the packet control data in the complete table...17
Figure 9.9 Example of the function “deleteAllFromMe”..19
Figure 9.10 Control packet arriving at node 3...21
Figure 9.11 Control packet arriving at node 4...21
Figure 9.12 Control packet leaving node 4..22

 Copyright 2002, IEEE. All rights reserved. Page v
 This is an unapproved IEEE Standards Draft, subject to change

IKN-2002-1 March 2002

List of tables

Table 9.1 Rate Assignments at each step...15
Table 9.2 Clockwise Ringlet Table..15
Table 9.3 Counter Clockwise Ringlet Table..15
Table 9.4 Control Packet Fields...16
Table B.1 —Names of command, status, and CSR values Error! Bookmark not defined.

Page vi Copyright 2002, IEEE. All rights reserved.
 This is an unapproved IEEE Standards Draft, subject to change

IKN-2002-1 March 4, 2002

Change history

The following table shows the change history for this user’s manual.

Version 1.0 (date)

Original version.

Version X.X (date)

Category Description

Editorial Description here

Technical Description here

 Copyright 2002, IEEE. All rights reserved. Page vii
 This is an unapproved IEEE Standards Draft, subject to change

9. Fairness

9.1 Introduction

Fairness control mechanisms for rings can be classified in global and link fairness mechanisms. Traditional
medium access control protocols are based on global fairness, where each station obtains the same
throughput, independently whether a node disturbs flows of other nodes or not. Today, advances in
microelectronics allow the design of more sophisticated link or bottleneck fairness mechanisms, potentially
resulting in much high network throughputs.

Definition of Global fairness: Fairness based on a mechanism that allows nodes to share the same amount
of the transmission capacity of the ring, independently whether their traffic interfere or not.

Definition of Link fairness: Fairness based on a mechanism that coordinates ring access of only those
nodes that interact during their packet transfer. Thus, all nodes that do not interfere are not throttled in their
performance.

In Figure 9.1, it can be seen that in the case of global fairness the flow from station 5 to station 6 is throttled
down to a rate of 0.5 because of the bottleneck on the link between stations 1 an 2. In case of link fairness,
this unnecessary throttling does not take place.

0

1

2

3

4

6

7

0.7

0.3
1

1

0.3

0.5

0.5

Bottleneck

5

0

1

2

3

4

6

7

0.7

0.3
1

1

0.7

0.3

0.5

0.5

Bottleneck

50.5

Global fairness Link fairness

Figure 9.1 Global and link fairness on a single ringlet

Link fairness can be achieved in multiple ways, depending on the definition of link fairness. One can base
link fairness on the demands of competing flows, where all are throttled proportionally (Figure 9.2), or it
can be based on the number of flows over a bottleneck (Figure 9.3).

Page 8

0
1

2

3

4

5

67
8

9

10

11

12

Bottleneck

1

0.1

0.1

0.1

0.1

0.01

0.01

0.01

0.01

0.01

0.01

Rate

0.71111

0.0711210

0.071129

0.071128

0.071127

0.0160

0.0150

0.0140

0.0130

0.0120

0.0110

FairSinkSource

Fairness Definition 1

Bottleneck

Bottleneck 1

Figure 9.2 Fair station throughputs in case of fairness definition 1 (proportional throttling)

0
1

2

3

4

5

67
8

9

10

11

12

Bottleneck 2

1

0.1

0.1

0.1

0.1

0.01

0.01

0.01

0.01

0.01

0.01

Rate

0.6111

0.11210

0.1129

0.1128

0.1127

0.0160

0.0150

0.0140

0.0130

0.0120

0.0110

FairSinkSource

Fairness Definition 2

Figure 9.3 Fair station throughputs in case of fairness definition 2 (throttling related to the number

of flows)
Furthermore, one distinguishes between reactive and proactive control mechanisms. In reactive control, a
node detecting congestion on its outgoing link typically sends a backpressure control packet in the opposite
direction to its upstream nodes enforcing them to stop transmission or enforcing to reduce their rate. In
proactive fairness control, a control packet circulates around the ringlet to coordinate the individual source-
destination flows of each node. For the content of the control packet several variations are possible. One
possibility is that each station i (i = 1,…, N) measures the number of bytes of each flow fij from source i to

 Page 9

destination j on its outgoing link i (i = 1, …, N) during the cycle time Tc of the control packet. When the
control packet arrives at station i, it calculates the fair rate rl over its outgoing link i and writes the result
into the data field of link i in the control packet. Since each station does this measurement, all stations are
cyclically updated with all the current fair link rates ri on the ring. For a dual ring, there is on control packet
on each ringlet. Control packets can either circulate in the same direction of the data flow or in the opposite
direction. In the latter case, one ringlet is used for the data flow and the other ringlet for its control.

In this proposal, however, control and data packets flow in the same direction. This has the advantage, that
in case of multiple parallel ringlets, there is a clear and simple association between data and control packets
belonging to a ringlet. In addition, we use no measurement data but in stead the current traffic load waiting
in each station to be transmitted. Due to this, the proactive control is based on the latest flow information,
thus allowing to dynamically adapt in the fastest way to traffic changes. The traffic pattern may even
completely change in every cycle and the mechanism is still able to react properly.

9.2 Fairness Algorithm
The fairness algorithm described in this section computes the fair rates for each source destination flow
from a cyclically updated demand matrix. It assigns the fair rates in a theoretical optimal way, i.e., all flows
get their maximum possible rate. Other features of the algorithm are:

Multiple different link capacities:
The algorithm assigns all rates in such a way that bottlenecks do not occur, even in the case where multiple
link capacities exists on one ringlet.

Multiple traffic classes:
The algorithm assigns fair rates for high and low traffic. It uses a mechanism to control the total amount of
high and low priority on each link, this prevents high priority taking all available capacity when large
amounts of high and low traffic are simultaneously being scheduled. Additionally, the algorithm is aware of
provisioned bandwidth connections.

C- C' is minimal capacity
for low priority when present

C

C'

Σ G

Link capacity CΣ L

Σ V

Link bottleneck
Correction required

Σ L

No correction

C'

Σ G
Σ V

C C

C'

Σ G

Σ V

Σ L

Link bottleneck
Coordinated flows

Σ L : all low-traffic flows
Σ V : all non-guaranteed high-traffic flows
Σ G : all guaranteed high-traffic flows

C- C' is minimal capacity
for low priority when present

C

C'

Σ G

Link capacity CΣ L

Σ V

Link bottleneck
Correction required

Σ L

No correction

C'

Σ G
Σ V

C C

C'

Σ G

Σ V

Σ L

Link bottleneck
Coordinated flows

Σ L : all low-traffic flows
Σ V : all non-guaranteed high-traffic flows
Σ G : all guaranteed high-traffic flows

Figure 9.4 Fairness of multiple traffic classes

The fairness algorithm is executed at each node at each calculation interval. The input to the algorithm is
the local flow table that is continuously being updated by a single control packet. How this is done will be
explained in Section 9.3 “Control Packet”.

Page 10

The fair rates are calculated in three steps:

• Step 1
In the first step, high priority is being assigned up to the available link capacity multiplied by a factor
f_highbound. This factor controls the minimum amount of low priority traffic on each link. If, for example,
f_highbound equals 0.9, then high priority can maximally take up to 90% of the available capacity if there
is more than 10% low priority. If there is only high priority traffic, then this traffic can of course take 100%
of the link capacity, the same is true for low priority.
Available link capacity is defined by the total capacity minus the amount of capacity taken by the sum of
all fixed connections over the link.

• Step 2

The second step is to assign low priority up to all available capacity. Assume that both high and low have
up to 100% of the link capacity to send and f_highbound equals 0.9 (as before), then low priority will get
its 10% in this step.

• Step 3

The last step is to assign the remaining high priority traffic up to full capacity.

Top level Pseudo Code:

MakeFair_1(){

 // init
 table->copyFrom(tableOriginal)
 allowed->toZero()

 // step 1:
 // Assign High Priority until highbound
 forall Links i {
 availableCap = linkCap[i] – fixedCap[i]
 fairData[i].remainingCapacity = availableCap * f_highBound
 }
 makeFair_2(HighPrio)

 // step 2:
 // Assign low until total available capacity
 forall Links i{
 availableCap = linkCap[i] – fixedCap[i]
 fairData[i].remainingCapacity += availableCap * (1.0-f_highBound)
 }
 makeFair_2(LowPrio)

 // step 3:
 // Assign remaining high
 // The problem here is that our demand table is overwritten in step 1
 // So we copy the table from the original table and substract what
 // we allowed in step 1.
 table->copyFrom(tableOrig)
 table->subtract(allowed)
 makeFair_2(HighPrio)
}

fairData is an array that holds the following information for each link:

• nDemand: An integer denoting the number of source destination demands (flows) over the link.

 Page 11

• flow: At initialization, this variable is set to the total traffic demand over the link (sum of all flows
over the link). During algorithm execution, this value is decreased.

• remainingCapacity: Initialized to the available link capacity,

We continue with the function “Makefair_2”, the core of the fairness algorithm. The idea is to assign at
each step the smallest possible amount of bytes to the flows, do this as long as there are bottlenecks. The
code below uses the array “flows”, which contains all source-destination pairs over the bottleneck link.
“Table” holds the input data; “allowed” holds the output when the algorithm finishes.

MakeFair_2(int prio){
 init()
 Do{
 bottleneck = highestBottleneckLink()
 if (bottleneck >=0) {
 somethingDone = false
 fairRate = calcFairRate(bottleneck)

 // first assign those flows that want to send
 // less than the calculated fair rate
 forall flows i over bottleneck {
 demand = table->get(flows[i].from, flows[i].To , prio)
 if (demand < fairRate) {
 allowed ->plus(flows[i].from, flows[i].To , prio, fairRate)
 table ->set(flows[i].from, flows[i].To , prio, 0)
 updateFairnessBetween(pair, fairRate, fairRate)
 somethingDone = true
 }
 }

 // if we assigned flows in the previous code section
 // (i.e. when somethingDone is true) we are done (at
 // least for now with this bottleneck)
 // otherwise assign the fair rates to all flows over
 // the bottleneck
 if (!somethingDone){
 forall flows i over bottleneck {
 value = tbl->get(flows[i].from, flows[i].to, prio)
 if (value>0) {
 allowed ->plus(flows[i].from, flows[i].to,
 prio, fairRate)
 table ->set(flows[i].from, flows[i].to, prio, 0)
 updateFairnessBetween(flows[i].from, flows[i].to ,
 fairRate,value)
 }
 }
 }
 }
 } while (bottleneck>0)

// copy remaining demands (since they are not involved in a
// bottleneck

 for (i=0;i<nrNodes;i++) for (j=0;j<nrNodes;j++)
 allowed->plus(i,j,prio,table->get(i,j,prio));
}

Page 12

Init calculates the flow and the number of demands on each link.

void init(){
 forall links i
 fair[i].flow = 0
 fair[i].nDemand = 0
 forall flows j over i {

value = tbl->get(flows[i].from, flows[i].to, prio)
 if (value>0) {
 fair[i].flow += value
 fair[i].nDemand ++
 }
 }
}

The function “highestBottleneckLink” returns the link id of the link that is the strongest bottleneck, i.e.,
from all links where the demand is higher that available capacity; it returns the link id with the highest
number of flows passing over it. The function returns –1 when there are no bottlenecks on the ringlet.

„calcFairRate” is a straightforward function:

double calcFairRate(i){
 return fairData[i].remainingCapacity / fairData[i].nDemands;
}

0
15

15 0

1

1

2

0

15
15

0 1

2

1

2

Figure 9.5 Link id’s on both ringlets

The function “updateFairnessBetween” updates the fairness variables on all links between fromNode and
toNode. The id of a link is the same as the node id where the link originates. This is true for both ringlets
(see Figure 9.5). The following functions loops through all link id’s between toNode and fromNode. Note
that we have an amount1 and an amount2, the first one is the amount to decrease the remainingCapacity,
the second to decrease the flow. These two amounts can be equal in case a flow has a smaller demand than
the calculated fair rate.

void updateFairnessBetween(fromNode, toNode, amount1, amount2){
 int start,end;
 if (RI==1){
 // anti clockwise, we use a „trick“ here
 start = (toNode + 1)%nrNodes;
 end = (fromNode + 1)%nrNodes;
 } else {
 // clockwise
 start = fromNode;

 Page 13

 end = toNode;
 }

 while (start!=end){
 fair[start]->remainingCapacity -= amount1;
 fair[start]->flow -= amount2;
 fair[start]->nDemand --;
 start = (start+1)%nrNodes;
 }
}

Example:

0

1

2

4

5

6

7

3

High
Low

Figure 9.6 All flows want to send at link capacity

In Figure 9.6 we see a single ringlet with 5 flows. Assume our f_highbound equals 0.9, then the fairness
algorithm assigns in the first step all high priority flows up to 90% of the available capacity. This can be
seen in Table 9.1, where all high priority flows get 45% because they all have to share a link on their path
with one other high priority flow.
The second step adds the low priority traffic; it leaves the assigned high priority rates unchanged. The last
step gives the high priority flows, where possible, the remaining capacity.

Flow Step 1 Step 2 Step 3

0 2 45% 45% 50%
1 3 45% 45% 50%
2 4 45% 45% 45%
3 5 55% 55%
6 7 100% 100%

Page 14

Table 9.1 Rate Assignments at each step

9.3 Control Packet

9.3.1 Introduction
The control packet that is circulating on the ringlet contains information that is used by the fairness
algorithm described in Section 9.2. Each node maintains a table with the amount of bytes for each source-
destination pair; each source node advertises these values. The control packet distributes this information,
however, the amount of information in a network with 256 nodes leads to a very big control packet. Since
one big packet is impractical, we cut the control packet in smaller pieces. This, of course, does not reduce
the amount of data being transmitted, but has advantages from both theoretical and practical viewpoints.
Recall that the fairness algorithm is based on the fact that all nodes have the same information, so the
smaller the control packet that is circulating and updating the information in the nodes, the better are they
synchronized at any time.
As a result, the control packet is continuously circulating in the same direction as the data flow, and the
packet is holding only a part of the complete table. How this is done will be described in the following
sections.

9.3.2 Control Packet Format
Before defining the control packet format, we must define how the complete table with all flows is
organized. As said in the previous section, the control packet is holding only a certain part of the complete
table. So each time when a control packet arrives, the node must know where to place the new information
in its table.
For a network with N nodes and two counter propagating ringlets, we define integer M to be N/2. The
reason for this is that we assume shortest path routing (based on the number of hops) and allow, in case of
equal costs, both possibilities. For a network with only one ringlet, M is defined to be N-1.
The table on the clockwise ring is defined as follows, where each entry contains the traffic demand for both
high and low priority traffic.

0 to 1 0 to 2 0 to... 0 to M
1 to 2 1 to 3 1 to …

… … … …
N-1 to 0 N-1 to 1 N-1 to … N-1 to M-1

Table 9.2 Clockwise Ringlet Table

And the table for the counter propagating ringlet:

0 to N-1 0 to N- 2 0 to... 0 to N- M
N-1 to N-2 1 to N- 3 1 to …

… … … …
1 to 0 1 to N-1 N-1 to … N-1 to M-1

Table 9.3 Counter Clockwise Ringlet Table

Example:

 Page 15

On a ring with 12 Nodes, the table used at the clockwise ringlet (RI=0) is organized as follows. N and M
are 12 and 6 respectively. In Figure 9.7, the first part of the table is shown. The number in the upper right
corner of each square is the index; the other numbers denote the source-destination flow. The general
functions that operate on the tables will be given in the next sections, for now we note that given a certain
index i, the source node id is given by i/M, the destination node id by ((i mod M)+sourceID+1) mod N.

0→1
0

0→2
1

0→3
2

0→4
3

0→5
4

0→6
5

1→2
6

1→3
7

1→4
8

1→5
9

1→6
10

1→7
11

2→3
12

2→4
13

2→5
14

2→6
15

2→7
16

2→8
17

3→4
18

3→5
19

3→6
20

3→7
21

3→8
22

3→9
23

4→5
24

4→6
25

4→7
26

4→8
27

4→9
28

4→10
29

5→6
30

5→7
31

5→8
32

5→9
33

5→10
34

5→11
35

0→1
0

0→2
1

0→3
2

0→4
3

0→5
4

0→6
5

1→2
6

1→3
7

1→4
8

1→5
9

1→6
10

1→7
11

2→3
12

2→4
13

2→5
14

2→6
15

2→7
16

2→8
17

3→4
18

3→5
19

3→6
20

3→7
21

3→8
22

3→9
23

4→5
24

4→6
25

4→7
26

4→8
27

4→9
28

4→10
29

5→6
30

5→7
31

5→8
32

5→9
33

5→10
34

5→11
35

Figure 9.7 Source-Destination Pairs

Now we come to the specific control packet fields:

Field Type Explanation
Offset int (2 bytes) The offset of the “data” field bytes in the complete table
ValidEntries int (2 bytes) The number of valid entries contained by the “data” field.
Data *Byte Array holding the actual data. The length is a configurable

system parameter.

Table 9.4 Control Packet Fields

As an example, consider Figure 9.8. The blue squares denote the place of the control packet data in the
table. In this case offset equals 14 and validEntries equals 8. The first data entry (data [0]) in the packet
contains the flow information from node 2 5 (this can be seen in Figure 9.7).

Page 16

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3

4 5 6 7

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3

4 5 6 7

Figure 9.8 Position of the packet control data in the complete table

9.3.3 Control Packet Arrival
This section explains the steps each node should perform upon arrival of the control packet (there is one
control packet on each ringlet). Since the size of the control packet is a configurable system parameter, the
data in one control packet can hold information from different source nodes. The steps to perform at each
node when a control packet arrives are:

1. Delete information originating from “our” node. Shift other data, when existent, forward.
2. Copy the data from the control packet into the local table.
3. Schedule the control packet forwarding

Before describing these steps in detail, we define the following functions that are ringlet dependent. The
other algorithms using these functions work for ringlets in both directions.
It should be noted that the functions explained below are a possible implementation, mainly intended for
ease of understanding; it surely can be optimized (e.g. using a circular data buffer).

9.3.3.1 GetSourceID
When a control packet arrives with a certain offset value, and valid data, we need to know from which
source this data originates. The following code return the source ID for data[index] (index is a number from
0 to ValidEntries). Recall that N is the number of nodes and M = N/2. RI is the ringlet identifier.

int getSourceID(int offset, int index){
 int pos = (offset+index)%(M*N);
 if (RI==0)
 return pos / M;
 else
 return (N-pos/ M)%N;
}

9.3.3.2 GetDestID
Similar to the previous function, the destination ID of data at position data[index]

int getDestID(int offset, int index){

 Page 17

 int pos = (offset+index)%(M*N);
 int sourceID = getSourceID(offset, index)
 if (RI==0)
 return ((pos%M)+sourceID+1)%N;
 else
 return (-(pos%M)+sourceID-1+N)%N;
}

9.3.3.3 Handle Control Packet Arrival
This function is the main packet arrival function; it calls the functions corresponding to the previously
discussed steps:

1. Delete information originating from “our” node. Shift other data, when existent, forward.
2. Copy the data from the control packet into the local table.
3. Schedule the control packet forwarding

void handleControlPacket(c802_17ControlPacket *pck)
{
 int thisNode = mac->atNode->getId();

 // ok, delete everything that I wrote last time
 pck->deleteAllFromMe(thisNode,&nodeIsReady);

 // update our local table:
 pck->updateTable(localTable);

 // schedule the forwarding
 scheduleEvent(controlHoldTime,FORWARD_EVENT);
}

9.3.3.4 deleteAllFromMe
This function checks to see if the information at data [0] comes from nodeID. When this is the case, then it
deletes all entries from nodeID. The boolean value “ready” is set to true if nodeID is ready, which means it
has sent all its information and should not add any information to the control packet.

void deleteAllFromMe(int nodeID, bool *ready){
 *ready=false;
 int sourceID = getSourceID(0);
 int remainingInRow = M-(offset%M);
 int todel = min (remainingInRow, validEntries);
 if ((sourceID==nodeID) && todel){
 if (remainingInRow==todel) *ready=true;

 memmove((void*)payload,(void*)(payload +todel),
 sizeof(entry)*(maxEntries-todel));
 offset = (offset+todel) %(M*N);
 validEntries = todel;
 }
}

An example of this function is shown in Figure 9.9. On the left we have the situation before and on the
right the situation after the function execution. As before N=12 and M=6. Furthermore, we assume that the
control packet enters at node 2.

Page 18

Node 2 now sees that the first entry in the control packet (index 14) originates from itself, and that there are
a total of 4 entries from node 2. Node 2 now removes these entries from the control packet, since this data
has completed one full round, and shifts the remaining data forward. Node 2 has no more data to send in
this round, and therefore sets the boolean variable ready to true. The offset will change to 18, validEntries
to 4.

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3

4 5 6 7

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3

4 5 6 7

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3

Figure 9.9 Example of the function “deleteAllFromMe”

9.3.3.5 UpdateTable
The function to update the table is straightforward, since all information in the data field is copied into the
local table.

void updateTable(c802_17table *table){
 int i;
 for (i=0;i<validEntries;i++){
 int sourceID = getSourceID(i);
 int destID = getDestID(i);
 table->set(sourceID,destID,data[i]);
 }
}

9.3.4 Control Packet Forwarding
Forwarding is done after a fixed (though configurable) amount of time after receiving the control packet.
Just before forwarding, we add our newest data to the packet if:

1. There is place available, and
2. It is my turn to add data

forwardControlPacket(){
 // nodeIsReady is set by deleteAllFromMe
 if (!nodeIsReady){
 int canAdd = ctrlPck->howMuchCanIadd(thisNode)
 while (canAdd){
 dest = ctrlPck->getNextDestID()
 data = getQueueInfo(dest)

 Page 19

 localTable->set(thisNode,dest,data)
 ctrlPck->add(thisNode,data)
 canAdd--
 }
 }
 sendPacket(); // implementation dependent
}

int howMuchCanIadd(int nodeID){
 int leftOver = maxEntries-validEntries;
 if (leftOver<=0) return 0; // FULL

 if (validEntries==0){ // complete Empty
 int remainingInRow = M-(offset%M);
 return min(leftOver,remainingInRow);
 }

 int firstFreePlace = validEntries;
 int sourceID = getSourceID(firstFreePlace);

 if (nodeID==sourceID){
 int lastEntry = validEntries+offset-1;
 int remainingInRow = M-(lastEntry%M)-1;
 if (remainingInRow == 0) remainingInRow = M;
 return min(leftOver,remainingInRow);
 } else
 return 0;
}

dataType getQueueInfo (int destID){
 // this function should read the buffer sizes
 // queue for destID (high and low priority)
 // and write the result in „dataType“

 implemenation dependent

}

The next function adds an entry with buffer info to the control packet:

void add(int nodeID, dataType &data){
 int firstFreePlace = validEntries
 payload[firstFreePlace] = data
 validEntries++
}

Page 20

Example:
Figure 9.10 shows the control packet as it arrives at node 3. Node 3 detects that there are 4 valid entries and
they all originate from node 3. This means that the information finished one round trip and node 3 deletes
these 4 entries form the control packet (offset=22, validEntries=0).

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3

Figure 9.10 Control packet arriving at node 3

Node 3 however, has more data to advertise (flow 3 8 and 3 9) and puts this in the control packet and
forwards the packet to node 4 (Figure 9.11, offset=22, validEntries=2).

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1

Figure 9.11 Control packet arriving at node 4

Node 4 sees that the first entry in the control packet originates from node 3; it copies this information into
the local table and adds its own entries (Figure 9.12).

 Page 21

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1

2 3 4 5 6 7

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1

2 3 4 5 6 7

Figure 9.12 Control packet leaving node 4

9.3.5 Control Packet Loss Detection and Recovery

To be done…

9.4 Calculation Interval and Control Packet Timing

time

calcInterval calcInterval

Fa
irn

es
s

C
al

c.

Fa
irn

es
s

C
al

c.

Fa
irn

es
s

C
al

c.

C
on

tro
l a

t n
od

e
i

C
on

tro
l l

ea
vi

ng
 n

od
e

i

Control
Packet
Hold
Time

C
on

tro
l a

t n
od

e
i+

1

C
on

tro
l l

ea
vi

ng
 n

od
e

i+
1

Control
Packet
Hold
Time

C
on

tro
l a

t n
od

e
i+

2

C
on

tro
l l

ea
vi

ng
 n

od
e

i+
2

Control
Packet
Hold
Time

C
on

tro
l a

t n
od

e
i+

3

C
on

tro
l l

ea
vi

ng
 n

od
e

i+
3

Control
Packet
Hold
Time

C
on

tro
l a

t n
od

e
i+

4

C
on

tro
l l

ea
vi

ng
 n

od
e

i+
4

Control
Packet
Hold
Time

Page 22

The circulation of the control packet and the calculation of the fair rates are two independent processes.
The interval at which the nodes calculate their fair rates (calcInterval) should be a constant value and
therefore should be triggered by the node itself. Although not crucial for correct operation, all nodes should
have their calculation intervals synchronized, i.e., all nodes should calculate at the same time. The best
way to achieve this remains for further study, but as said, the protocol is not very sensitive to this.

Another system parameter is the control packet hold-time. Together with the control packet size, this
parameter directly controls the protocol overhead versus protocol performance. Note that the packet-hold
time could be zero.

 Page 23

	Status summary
	Contacts

	Table of contents
	List of figures
	List of tables
	Change history
	Version 1.0 (date)
	Version X.X (date)

	Fairness
	Introduction
	Fairness Algorithm
	Control Packet
	Introduction
	Control Packet Format
	Control Packet Arrival
	GetSourceID
	GetDestID
	Handle Control Packet Arrival
	deleteAllFromMe
	UpdateTable

	Control Packet Forwarding
	Control Packet Loss Detection and Recovery

	Calculation Interval and Control Packet Timing

