RPR MAC Definition and Implementation

Sanjay K. Agrawal
Jason Fan, Raj Sharma
Luminous Networks

sanjay@luminousnetworks.com

Outline

- Class of service support in layered networks
- RPR MAC framework proposal
- RPR MAC hardware implementation
- System level architecture tradeoff
- Conclusion

Class of Service support

 Layer 3: IP DSCP specifies 3 bits for CoS, 3 bits for Drop Presidence, 2bits for ECN

Layer2: 802.1P/Q specifies 3 bits for CoS

Layer 2.5: MPLS specifies 3 bits of CoS

Diffserv code points are standard and poised to be consistent across layers

Class of Service

- Express Forwarding (110): Time sensitive committed class
 - Legacy leased line, Voice over IP
- Assured Forwarding 3 (011): Time Sensitive committed class
 - Video
- Assured Forwarding 2(010): Time insensitive committed class
 - Committed data Services, Protected
- Assured Forwarding 1(001) Time insensitive overcommitted class
 - Over committed data services
- Best Effort (000): data services
 Luminous Networks/ Sanjay K. Agrawal, May 12, 2001. IEEE 802.17

Common RPR MAC functional Requirements

- Class of Service (CoS) support
- Backward Congestion Notification using internode signaling
- Using CoS simultaneous support for
 - Cut through traffic
 - To minimize latency for high priority class
 - Store and forward traffic
 - To allow low priority pass traffic to be stored while high priority add is admitted

Proposed RPR MAC Implementation

RPR System Architecture

RPR MAC Hardware Implementation Requirements

- Rate adaptation for the drop traffic
- Minimal buffering in the MAC chip
 - Only on board buffers ~ 8Mbits (<u>.8msec@10Gig</u>)
 - External memory interface increases the MAC pin count by 128 pins
- Use of standard interfaces high speed interfaces

Proposed RPR MAC Hardware Implementation

Traffic Shaper Architecture

- Rate adaptation for the drop traffic.
- BCN based architecture
 - Avoids buffering in the intermediate nodes in the rings.
 - Propagates congestion to source nodes.
 - Need per RPR node queuing to minimize BCN based head of the line blocking
 - Add traffic requires 50-100ms buffering
 - For Class based queuing architecture
 - Class based queuing for the add traffic for each node in the ring: 64*8 = 512 queues
 - Class based queuing for drop traffic
 - For Per flow queuing architecture
 - Queue/virtual queue for each SLA based flow: millions of flows
 - Queue for each flow for drop: millions of flows

Traffic Shaper Architecture (cont...)

- Class based Queuing Architecture
 - Supports cut through for certain classes, and store and forward for others
 - Avoids inter-node signaling, can accept BCN but may/may not generate it.
 - Single Class based queuing structure for add and pass traffic
 - Single class based queuing structure for drop traffic
 - Requires 50-100ms buffering
 - Flow based fairness addressed in class queues using:
 - Second level of scheduling on per service aggregate
 - Congestion control on per service aggregate
 - No issues with multicast

Conclusion

- Layered architecture allows vendor differentiation while insuring interoperability
- RPR MAC proposal simple and not tied to a particular implementation that addresses only a set of needs. Supports both
 - Cut through
 - Store and forward
- Hardware proposal supports most of the proposals with minimum cost of implementation
- Traffic shaper architecture based on class based queuing supports for most of the service scenarios

Source:

tcp flows:

Node 1-2 = 3 tcpflows Node 3-17 = 2 flows Node 18-32 = 1 flow

Sink:

BCN = Backward Congestion Notification

LCC = Local Congestion Control

Source:

tcp flows:

Node 1-32 = 5 tcpflows

Sink:

BCN = Backward Congestion Notification

LCC = Local Congestion Control

Cut through vs. Store and Forward

- Link 2 is congested
- Measure Max Q Delay for Host Traffic in Link 2
- Variable: Span Propagation Delay
- Number TCP flows such that link saturated
 - \bullet 2ms = 21 TCP flows

Cut through vs. Store and Forward High priority Add Max Q Delay

