Resilient Rings

Addressing markets that are not good fits for RPR

John Lemon

Contents

- What Limits RPR's Success
- What Is Needed For Mass Success
- Technical Approach
- Technical Issues
- Technical Recommendation
- Forum Issues
- Forum Recommendation
- Marketing Issues
- Marketing Recommendation
- Open Issues

What Limits RPR's Success

- RPR is not Ethernet
 - RPR doesn't have the Ethernet brand
 - RPR's advantages are not often compelling enough improvements where Ethernet is mostly 'good enough'
- Cost
 - RPR has large development costs
 - RPR has large material costs
- Complexity
 - RPR has more complexity than is often needed
 - RPR has more complexity than is often used
 - RPR has more complexity than often can be understood
 - Closely tied to cost

RPR Is Not Ethernet

- RPR doesn't have the Ethernet brand
 - The Ethernet brand is universally recognized and valued
 - Every new layer 2 technology wants to be known as Ethernet
 - 802.3ah has little more than the frame format in common with previous versions of Ethernet
 - WiFi is often referred to as "wireless Ethernet"
 - WiMax is often referred to as "wireless metro Ethernet"
- RPR's advantages are not often compelling enough
 - Wireless (e.g., 802.11 or 802.16) is successful because of the uniqueness of the medium, not any special features
- Non-Ethernet solutions add costs
 - Additional development costs for new tools and training
 - Additional capex for new provisioning, management, and diagnostics tools
 - Additional opex for different management paradigm

Cost

- RPR has large development costs
 - RPR complexity reduces interest in implementing
 - RPR complexity reduces ability to implement (at least correctly)
 - Existing Ethernet chips, Ethernet cores, and embedded Ethernet MACs can't be used
- RPR has large material costs
 - RPR silicon solutions are scarce and expensive
 - Choice of one (relatively) expensive ASIC, turning Xilinx "solution" into something that works, or roll your own
 - Barriers to entry limit providers, which limits volume, which limits cost amortization in ASICs
 - RPR requires a custom solution, without use of off the shelf chips, cores, or embedded Ethernet MACs
 - Either new silicon or additional silicon is required

<u>Complexity</u>

- RPR has more complexity than is needed
 - Conservative fairness is not necessary
 - Multichoke fairness is unneeded
 - Spatially-aware fairness is not often needed
- RPR has more complexity than is used
 - Most of fairness is not fully utilized
 - Classes of services are rarely used as true classes
- RPR has more complexity than can be understood
 - Fairness and service classes are almost universally not (fully) understood by equipment providers, service providers, or customers
 - Most providers do not fully understand RPR's capabilities, features, or areas of best applicability
 - Much of what providers do understand, they are not able (or willing) to explain to their customers

What Is Needed For Mass Success

Ethernet

- The (most important) advantages, features, and capabilities must be made available via Ethernet
- Low cost
 - The economics of Ethernet must be leveraged
 - Additions beyond base Ethernet must be accomplished with very little or no additional hardware
 - There must be (reasonably) wide adoption
- Low complexity
 - Only what is needed (and explainable) should be added
 - Everything should be doable in software or at least with very minimal additional hardware

Technical Approach — Frame

Shim added to Ethernet (or other 802) frame

- Contains the essential portion of the RPR header
 - Contents, if any, of ring tag yet to be determined
- Similar to VLAN shim
- Includes / preceded by 802.1ah header/shim

Technical Approach — Bridge Shim

- Following applies only if a ring tag is used
- Ring shim processed at each station as part of REISS (in other words, new bridge shim layer for this)
 - Implies each ring station has two MACs, instead of RPR's one MAC per station
 - Would make topology discovery more complicated, or
 - Would necessitate including peer MAC address in TP frame
 - Transit path becomes path between bridge ports
 - Allows for processing of frame between ring ingress and ring egress
 - Includes / preceded by 802.1ah header/shim

Technical Approach — Fairness

- Drop multichoke
- Drop conservative mode
- Run (or allow for running) at software speeds
- Fairness applies to any frame with DEI bit set

Technical Approach – QoS

Replace service classes with 802.1Q priorities

Technical Issues

- Is a ring tag/header/shim needed
- Where to stick the header/shim
 - If the ring shim is added before other VLAN tags, then new/special hardware would be needed to parse this header in order to see VLAN tags
 - If the ring shim is added after other VLAN tags, then new/special hardware would be needed to parse through the VLAN tags to get to the ring shim, and this probably violates layering
- TTL
 - A TTL provides benefits, especially for rings
 - A TTL provides differentiation from service layer only approaches
 - A TTL in the header requires checking and decrementing the header field at every ring station
 - FCS can be modified instead of being recomputed
 - Simple hardware between two Ethernet MACs, if possible to stick something between them

Technical Recommendations

Tag location

- Use 802.1ah I-tag followed by possible ring tag, followed by 802.1Q VLAN tag
- Assume that if this starts soon enough, and if we decided a ring tag is needed, that vendors adding support for 802.1ah will take this extra tag into account

TTL

- Use TTL at least on management frames
 - To be processed by software off the bridge relay path
- No opinion yet on whether to use on data frames

Forum Issues

- Possibility 1: RPR Lite
 - A new RPR MAC standard would be created
 - It would probably be named 802.17.1
 - The work would take place entirely with the 802.17 WG
- Possibility 2: Ring bridge
 - 2a: It could be a new type of bridge, a la 802.1AP
 - 2b: Or it could be an addition to 802.1Q, a la 802.1ah
 - It would have an 802.1<something> name
 - The work would probably take place partially within the 802.17 WG and partially within the 802.1 WG
 - The 802.17 WG would (hopefully) take the lead role

RPR Lite

- Advantages:
 - The new MAC would be designed and controlled entirely by the 802.17 WG
 - The new MAC would clearly be something unique
- Disadvantages:
 - Involvement by only the 802.17 WG greatly reduces the industry exposure and involvement needed for wide adoption
 - Being unique is good only when clearly better
 - There is perhaps some marketing baggage for 802.17 because of its lack of wide success
 - Anything bad about 802.17 would be assumed to exist for 802.17.1

Ring Bridge

- Advantages:
 - Standardization by the 802.1 WG greatly increases the industry exposure, hopefully leading to wide adoption
 - 802.1 is more widely recognized and perhaps has better valuation than 802.17
 - This would be a chance to have a fresh start, without any real or perceived baggage from 802.17
- Disadvantages:
 - The new standard would not be entirely designed and controlled by the 802.17 WG
 - Those who don't understand the benefits could mess up the result
 - Those who have competing interests could mess up the result

Forum Recommendations

- Ring bridge standard from 802.1
- Amendment to 802.1Q
 - Most likely no modification to bridge relay, only to higher level control and management
- 802.17 WG to do work for 802.1
 - Pitch as being similar to how 802.1AX is being created by 802.3
 - May be viewed as not qualifying for such independence
 - Fall back to 802.1 TG which automatically includes all 802.17 WG members
 - Would run in parallel to other 802.1 TGs

Marketing Issues

- RPR Lite
 - Probably be the worst name possible
 - Carries all baggage of RPR
 - Sounds like a weak subset of RPR
- 802.1az
 - Does not roll of the tongue or convey any meaning
- Resilient Ring Relay (RRR)
 - Doesn't take advantage of Ethernet brand
- Resilient Ethernet Ring (RER)
 - Rides Ethernet brand popularity
 - Same approach as ITU's "Protected Ethernet Ring"

Marketing Recommendation

- Refer to as Resilient Ethernet Ring (RER) - 802.1Qaz
 - Emphasis is on key attributes:
 - Resilient/protected
 - Ethernet
 - Ring-specific

Open Issues (1)

- How to roll this out in a manner least likely to garner resistance
- PHYs
 - Should this support SONET/SDH PHYs?
 - Not sure how to do this under auspices of 802.1
 - Not doing so would leave out substantial portion of the market
 - Any reason why this wouldn't automatically work with other 802 PHYs than 802.3?
- TTL
 - Can existing bridge chips recompute FCS when passing from one bridge port to another?
 - Can existing bridge chips do simple substitutions (to be used as a replacement for decrement of TTL)?

Open Issues (2)

- Fairness
 - How well will fairness work if it runs at microprocessor speeds (e.g., 10 ms)?
 - Does stripping fairness down to aggressive, single choke make it simple enough, or should it be further simplified?
 - Should each priority contain its own fairness domain?
- Topology and attribute discovery
 - Any reason to use anything other than existing topology discovery and attribute discovery messages?

Open Issues (3)

- Protection
 - If topology discovery messages are being used, any reason to use any other standard messages such as CC for break detection?
 - Should both steering and wrapping be supported?
- OAM
 - Keep Echo frame, or use LBM/LBR frames?
 - RPR Echo allows choice of paths. Not sure how this could be done with LB frames.
 - Keep Flush frame (but rename it), or what?
 - Keep SAS Notify frame?
 - Keep org-specific frame?