

Transit Path Design and Inter-Operability

Necdet Uzun

Pinar Yilmaz

September 11, 2001

- Introduction
- Requirements
- Simulation Results
- Conclusion

- Some architectures have 1 transit buffer
- Some architectures have 2 transit buffers
- Buffers operating in store-and-forward or cutthrough mode
- Each architecture has a unique congestion control and fairness algorithm with:
 - Unique messaging infrastructure
 - Unique control parameters
- Transit path design is critical for performance

• Questions:

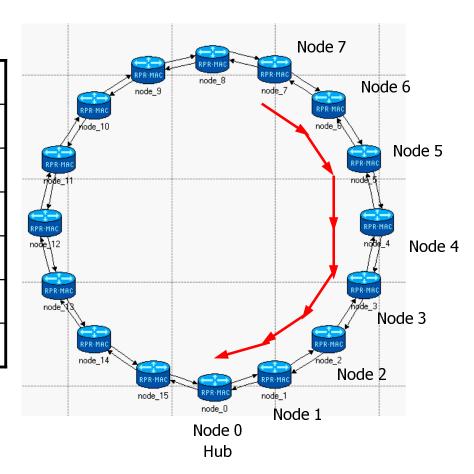
- Can different architectures live in the same ring?
- If yes, can we get the same or similar performance in a heterogeneous ring compared to a homogenous ring?
- Answers:
 - Yes!
 - And yes!

- The mass of the problem revolves around congestion control
- Need to make sure no one is favored based on a particular architecture or location on the ring
- How?
 - Need to investigate on a case-by-case basis
 - Who wants to talk to whom?
- A single control message format needs to be defined

- Simple Single Transit Buffer (SSTB)
 - One transit buffer (cut-through)
 - XON/XOFF to stop low priority traffic
- SRP
 - Two transit buffers (store-and-forward)
 - Usage messages
- Traffic pattern:
 - All traffic destined from the nodes to the hub
 - ~%30 high priority, ~%70 low priority
- Homogeneous ring performance comparison presented in May 2001

http://www.ieee802.org/17/documents/presentations/may2001/nu ctvst 02.pdf

- Relay control messages originated from other type of nodes upstream
- Simple Single Transit Buffer (SSTB)
 - If (value==NULL_USAGE) then XON; else XOFF
 - Token bucket for rate shaping of low priority TX

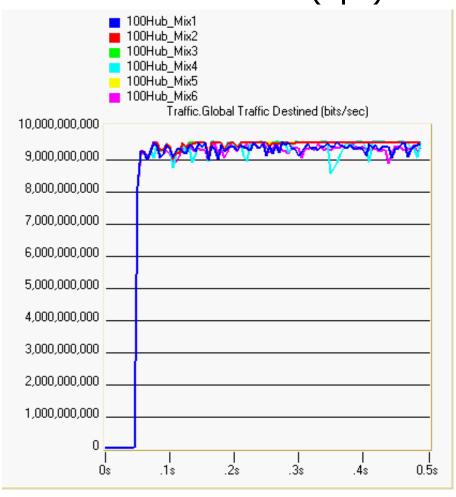

SRP

- Cut allowed usage by a % when XOFF (used 50%)
- Limiting data rate on the ring to a percentage of the link rate (used 95%)
- Token bucket for rate shaping of low priority TX

Different combinations

	Single Tb	Dual Tb
Mix 1	7,5,3,1	6,4,2,0
Mix 2	6,4,2,0	7,5,3,1
Mix 3	7,6,5,4	3,2,1,0
Mix 4	3,2,1,0	7,6,5,4
Mix 5	7,4,3,0	6,5,2,1
Mix 6	6,5,2,1	7,4,3,0

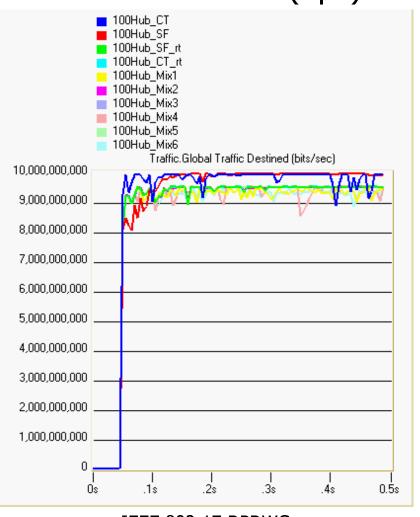
- CT: all single TB nodes
 - CT_rt: single TB with rate shaper for Low Priority
- SF: all dual TB nodes
 - SF_rt: dual TB with rate shaper for Low Priority
- Mix#: single and dual TB nodes, each with rate shaper for Low Priority



- High Priority TX CAR = 420 Mbps
 - (CT nodes only)
- Low Priority TX shaping rate = 930 Mbps
 - (CT and SF nodes)
- SF nodes limited to %95 of link rate
 - (no limit for CT nodes)

Throughput (1), Hetereogenous Rings

Traffic Destined (bps)


IEEE 802.17 RPRWG 9/10/01 11

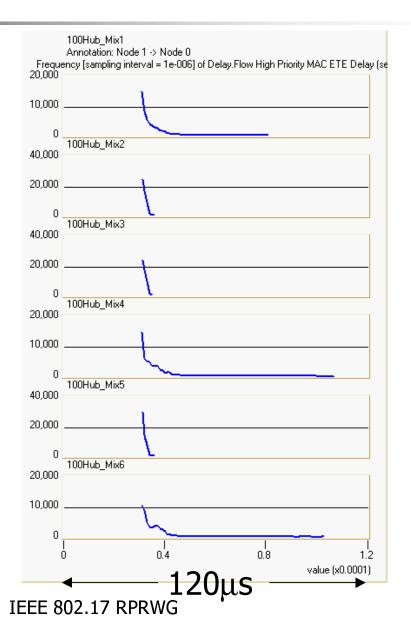
CISCO SYSTEMS Throughput (2)

. Hetereogenous Rings compare with Homogenous Rings

Traffic Destined (bps)

Delay (1), Hetereogenous Rings

High Priority MAC ETE Delay (sec)


IEEE 802.17 RPRWG 9/10/01 13

Delay (2), Hetereogenous Rings

High Priority MAC ETE Delay (sec) Histogram

Max Jitter observed: 72 μsec

- Inter-operability is possible!
- Need cooperation of all nodes involved in a heterogeneous ring
- Need to agree on common control messaging format and parameters