

A Fairness Algorithm for

Dynamic Spatial Reuse Avoiding HOL Blocking

Stein Gjessing Simula Research Lab. / U. Oslo Oslo, NORWAY

steing@ifi.uio.no www.ifi.uio.no/~steing

Non-HOL Blocking Fairness

- Assume:
 - Non-HOL Blocking Ingress Queues
- We show a fairness algorithm with:
 - Control Packets (broadcast or point-to-point)
 - State proposal
 - State machine proposal
- We are considering one ring/direction (same in the other direction)

Main idea

Assume we have NHOLB queueus

Control packets

- Either 1. each stations broadcasts its own status data or (to the same effect)
 - 2. one or more control packets that contain all stations status data circle the ring.

Each stations responsibility

- Two possibilities:
 - 1. Do not send more than your downstream neighbors do (RFC 2892)
 - 2. Inhibit sending in order to empty (shrink) your downstream neighbors passthru buffers
- I have made an implementation of 1

(using low pass filters and "usage values" as in RFC 2892)

Implementation details:

Status is: How much I have sent lately

2(N-1) counters in each station

I am station 2 Station no.: 3 4 5 6 7 0 1 It is using itself (from status packets): (Usage) I have sent so much past it: (Sent) Passthru buffers Data

2(N-1) counters in each station

3. September 2001

802-17-01-00095, sg dpr 01.pdf

Stein Gjessing, Simula Research Lab

Send order

- 1. From high prio. passthru buffer
- 2. From high prio. ingress buffer
- 3. If low prio. passthru buffer below threshold:
 - Half and half from low prio. ingress and low prio. passthru buffers
- 4. If low prio. passthru buffer above threshold:
 - From low prio passthru buffer
- 5. Must regulate high prio. traffic so that low prio. passthru buffers never overflow!

 (or have a high threshold after which passthru has absolute priority)

I am station 2

If I want to send to station 6:

Station no.: 3 4 5 6 7 0 1

It is using itself (from status packets):

I have sent so much past it lately:

U (Usage)

S (Sent)

For all
$$i = 3, 4, 5$$
:
if $(S_i > U_i)$: do not send

In words:

For every segment along the path: If I have used more of this segment than the "owner", I may not send.

I am station 2

I was allowed to send to station 6:

• Update own total outbound traffic rate as well as S_3 , S_4 and S_5 with how much was sent.

Own total outbound lately:
Low pass filter version:

Station no.: 3 4 5 6 7 0 1

It is using itself (from status packets):
I have sent so much past it lately:

Station no.: 3 4 5 6 7 0 1

U (Usage)
S (Sent)

Conclusion (and further work)

- Solves HOL Blocking problem
- Perfect bandwidt allocation
- Simple algorithm
 - Few counters
 - Small control packets
 - Alternatively: larger packet(s) that circle the ring
- Can be extended / changed to cater for reduction of downstream passthru buffers instead
 - Downstream stations send "Don't-send-past-me" control packets (depending on size of passthru buffer).
 If all upstream stations don't send past me for a while, then my passthru buffer gets reduced/emptied.

Performance and Questions

• P in performance session

Q now