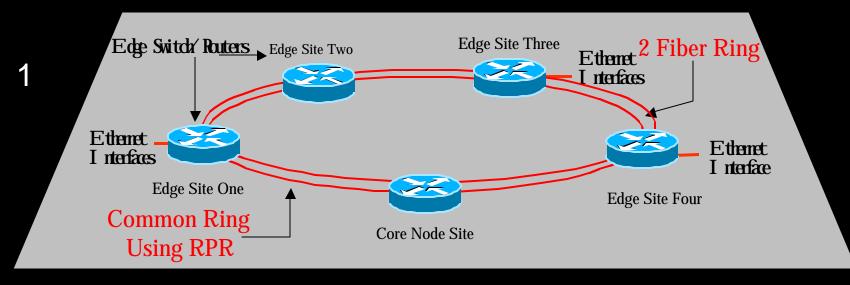
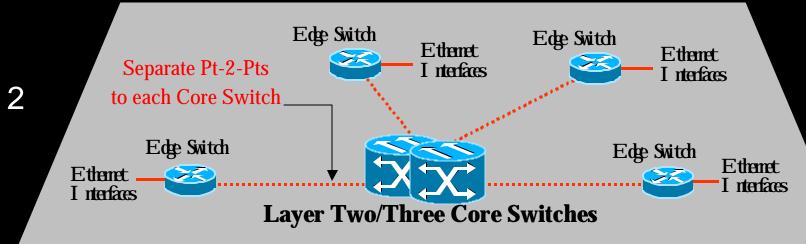

Traffic and Cost Model for RPR versus 1GbE and 10GbE Architectures A Carriers' Carrier Perspective Stevan Plote

Director of Technology

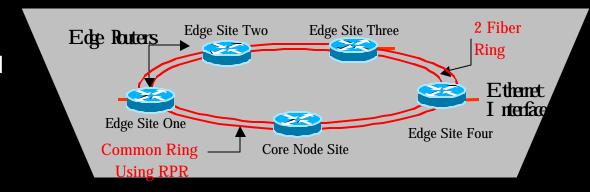
SONET Architecture - Logical




Looking Glass Networks Architecture Overview

- Metro ring sizes of 11km 105km; ave. 35km
- Interconnect LEC Co-Lo, Carrier Hotels, Large Enterprises
- Five 9's reliability
- Most GbE connections that Looking Glass transports will be line rate
- No stat muxing capability on the network
- All traffic stays within the metro space

Data Architecture Options

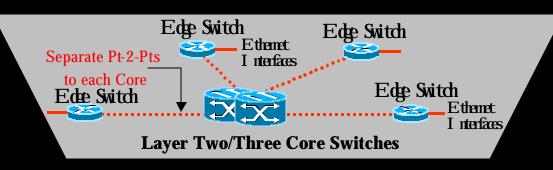


Preliminary RPR Points

Pros

- Fiber conservation
 - No Core connect required for each edge location
- Equipment cost
 - Core cost will be cheaper
 - Edge cost will rise
 - Significant saving by not using long haul (ZX) optics and XX times fewer GBICs
- Bandwidth provisioning
 - It is Ethernet
 - LGN will not have to oversubscribe the ring
 - Spatial reuse has economic benefits
 - Looking Glass can oversubscribe a segment of the ring and use priority to allocate bandwidth
 - Overall benefits of over-subscription

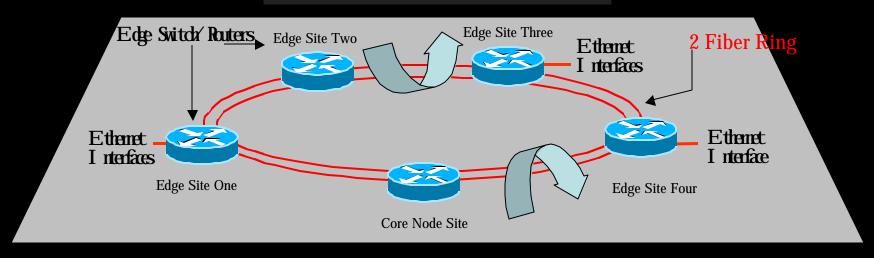
Cons


- No delivery guarantee for Private line service
- Multi-node ring fiber topology
 - Operational impact on fiber, maintenance, record keeping
- Testing and monitoring
 - Multi-node ring requires RMON test access and monitoring
 - Pt-2-Pt plan monitors and tests at the core.

Preliminary L2/L3 Points

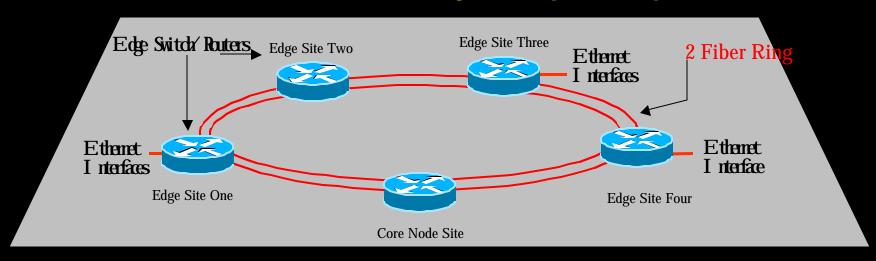
Pros

- Maintains current Star fiber topologies
 - No fiber operational impact, record keeping
- Equipment cost
 - Edge cost is lower
- Bandwidth provisioning
 - Pt-2-Pt allows you to oversubscribe any trunk on the network as well as any access Edge
- Testing and monitoring
 - Supports monitoring and test at the core.
- Core router supports peering
 - Looking Glass can connect to anyone else at layer 3



Cons

- Excessive fiber usage
- Equipment cost
 - Cost impact of long haul (ZX) optics
 - Core costs are higher
- Need for a core router
 - Additional equipment installation, maintenance and management


Model - Analysis

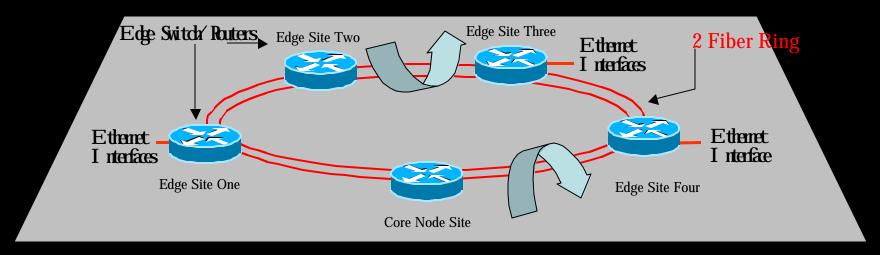
- Use 10 Gbps RPR interfaces versus Ten 1Gbps Pt2Pt connections per Edge
 - LX/LH GBICs for RPR model and ZX GBICs for Pt2Pt model
- Assumed 100% bandwidth reuse on each segment of ring
 - 80 fiber pairs for pt2pt vs 2 fiber pair for RPR
- Model a max fiber cost using a fully loaded, amortized cost for each pair
 - Increment cost of using each pair in a deployed cable
- Fiber cost difference: 40X less with RPR

Model - Analysis (con't)

- Hardware cost delta EDGE/CORE: 19% less with RPR @100% reuse
- Hardware cost delta EDGE/CORE: 15% less with Pt2Pt @ 50% reuse
- Overall cost delta: 37% lower at Max fiber cost with RPR@100% reuse
- Extended Analysis
 - 8 EDGE sites per ring has 80X less fiber cost and 42% lower total cost with RPR

Model Disclaimers

- The numbers on the following slides are not "true" costs
- Common control and access interfaces are similar in all model cases.
- The trunk side interface differences are the usage of ZX vs LX GBICs based upon assumed span distances
- The trunk side interfaces are priced relative to each other: 1GbE 10GbE and 10Gb RPR
- The fiber costs are also arbitrary but relative to each other based upon a 35KM ring



Looking Glass Model Summary

Model		Hardware Cost		Fiber Cos	t	Total Cost		
LGN Ring	4	\$1,620,305		\$14,308		\$1,634,613		
LGN Star 4		\$2,007,370		\$572,331		\$2,579,701		
LGN Star 4	l@50	\$1,407,050		\$286,166		\$1,693,216		
LGN Ring 8		\$2,936,145		\$14,308		\$2,950,453		
LGN Star 8		\$3,911,790		\$1,144,662		\$5,056,452		
LGN Star 8@50		\$2,591,180		\$572,331		\$3,163,511		
Cost Delta Compare		H/W Delta Costs		Fiber Cost Delta		Total Cost Delta		
4 Node Ring vs Star		19%		98%		37%		
4 Node Ring @50 vs Star		-15%	Star less	95%		3%		
8 Node Ring vs Star		25%		99%		42%		
8 Node Ring @50 vs Star		-13%	Star less	98%		7%		

Model - Analysis

- Use 10 Gbps RPR interfaces versus 10 Gbps Pt2Pt connections per Edge
 - LX/LH GBICs for RPR model and ZX GBICs for Pt2Pt model
- Assumed 100% bandwidth reuse on each segment of ring
 - 8 fiber pairs for pt2pt vs 2 fiber pair for RPR
- Model a max fiber cost using a fully loaded, amortized cost for each pair
 - Increment cost of using each pair in a deployed cable
- Fiber cost difference: 4X less with RPR

Looking Glass Model 10Gb I/F

Model	Hardware Cost		Fiber Cost		Total Cost	
4 Node Ring	\$1,620,305		\$14,308		\$1,634,613	
4 Node Star	\$2,007,370		\$572,331		\$2,579,701	
4 Node Star @50	\$1,407,050		\$286,166		\$1,693,216	
4 Node Star@10G I/F	\$1,213,304		\$57,233		\$1,270,537	
4 Node Ring 10G I/F	\$1,070,305		\$14,308		\$1,084,613	
8 Node Ring	\$2,936,145		\$14,308		\$2,950,453	
8 Node Star	\$3,911,790		\$1,144,662		\$5,056,452	
8 Node Star @50	\$2,591,180		\$572,331		\$3,163,511	
8 Node Star@10G I/F	\$2,203,688		\$114,466		\$2,318,154	
8 Node Ring 10G I/F	\$1,946,145		\$14,308		\$1,960,453	
Cost Delta Compare	H/W Delta	Costs	Fiber Cost	Delta	Cost Delta	
4 Node Ring vs Star	19%		98%		37%	
4 Node Ring @50 vs Star	-15%	Star less	95%		3%	
4 Node Ring vs Star@100	12%		75%		15%	
					*	
8 Node Ring vs Star	25%		99%		42%	
8 Node Ring @50 vs Star	-13%	Star less	98%		7%	
8 Node Ring vs Star@100	12%		88%		15%	

10G RPR priced @ 2X 10 GbE

Looking Glass Model Update for 10GbE

Model		Hardware Cost		Fiber Cost		Total Cost		
4 Node Ring		\$1,620,305		\$14,308		\$1,634,613		
4 Node St	ar@10G I/F	\$1,213,304		\$57,233		\$1,270,537		
4 Node Ri	ng@10 G	\$820,305		\$14,308		\$834,613		
4 Node St	ar	\$2,007,370		\$572,331		\$2,579,701		
4 Node St	ar @50	\$1,407,050		\$286,166		\$1,693,216		
8 Node Ri	ng	\$2,936,145		\$14,308		\$2,950,453		
8 Node St	ar@10G I/F	\$2,203,688		\$114,466		\$2,318,154		
8 Node Ri	ng@10G I/F	\$1,496,145		\$14,308		\$1,510,453		
8 Node Star		\$3,911,790		\$1,144,662		\$5,056,452		
8 Node St	ar @50	\$2,591,180		\$572,331		\$3,163,511		
Cost Delta	Compare	H/W Delta (Costs	Fiber Cost	Delta	Total Cost	Delta	
4 Node Rin	ng vs Star	19%		98%		37%		
4 Node Rir	ng @50 vs Star	-15%	Star less	95%		3%		
4 Node Rin	ng vs Star@10G	32%		75%		34%		
							* 10	G RPR priced
8 Node Rir	ng vs Star	25%		99%		42%		@ Parity
8 Node Rir	ng @50 vs Star	-13%	Star less	98%		7%		
8 Node Rir	ng vs Star@10G	32%		88%		35%		

Recommendations

- 10Gb RPR at a Premium to 10Gb ENET does not win
- RPR has to be as cheap as Ethernet. Fiber gain is not a big enough advantage
 - RPR shows cost advantages vs Pt-to-Pt due to fiber and ZX connectors
- At ring bandwidth less than 10Gbps RPR does not prove in
 - Not enough ring bandwidth at 2.5Gbps to justify RPR and multiple nodes on a ring; even with bandwidth reuse in a nonoversubscribed ring
- Private line traffic reliability has to be proven on RPR
 - Overlay SONET network for restoration guarantee

Recommendations (con't)

- As we move to over-subscription models, and if RPR costs more than Ethernet; the cost advantage for RPR shrinks and Carriers should look at Pt-to-Pt
 - Over-subscription means fewer fibers and ZX connectors in Pt-to-Pt architectures
 - Higher node counts reduce the probability of 100% spatial reuse on RPR ring; less advantage versus Core switching
 - RPR reliably guarantees TDM service delivery
- Network Management interfaces must support CORBA
 - Carriers require TMN architectures
 - Typical EMS layer