

Cyclic-Reservation RPR MAC Protocol with Link-Fairness

Harmen R. van As, Kemal Bengi, Arben Lila Vienna University of Technology, Austria

Protocol properties

Support of:

- Link-fairness
- Service Level Agreements (SLAs)
- Heterogeneous link speeds

Performance properties:

- Control of flow-based source-destination traffic
- No HOL blocking
- Very high ring throughput
- Node throughputs approximate theoretical fairness values
- Low delays
- No losses
- No backpressure required
- Insertion buffer occupancy at most one MTU size
- Free and reserved access
- Unfairness due to free access can be corrected
- Pure free access in case of loss of fairness control packet

Assumptions

Two traffic classes with individual bottleneck-fairness control

- All nodes know
 - the bit rates of all transmission links (heterogeneous links)
 - the constant bandwidth of all source-destination flows (CBR)
 - the guaranteed bandwidth of all source-destination flows (VBR)
- Information is distributed by token-based resource reservation protocol

Simultaneous Access by buffer insertion

- Insertion buffer in transmit path is only used to resolve collision conflict during packet transmission
- Cut-through mode
- Maximum size of insertion buffer is 1 MTU
- Insertion buffers (low and high) must both be empty before medium access takes place

Node Structure

Insertion buffers

- Ring priority
- Priority bypassing on ring

Access mechanism

- Insertion buffer solves only packet collision problem. Not used for scheduling.
- Transmission path is used as a pure transmission link, i.e. ring priority
- Insertion buffer must be emptied before accessing the ring
- Only medium access scheduling

Fairness

Global fairness: Fairness based on a mechanism that allows nodes to share the same amount of the transmission capacity of the ring, independently whether their traffic interfere or not

Local fairness: Fairness based on a mechanism that coordinates ring access of only those nodes that interact during their packet transfer

Therefore, all nodes that do not interfere are not throttled in their performance

Fairness mechanism (1)

- Control packet circulates on each ring in data direction
- One entry for each traffic and for each source-destination flow
- Circulating information is based on waiting load in each node, not on old measurements on the links
- Circulating information is corrected for each bottleneck link
- Fairness reaction time is 1 roundtrip of the control packet

Fairness mechanism (2)

Example with single ring

Coordinated table values In node 2

Flow	High	Low
1 -> 2	H12	B12
1 -> 3	H13	B13
1 -> 4	H14	B14
2 -> 3	H23	B23
2 -> 4	H24	B24
2 -> 1	H21	B21
3 -> 4	H34	B34
3 -> 1	H31	B31
3 -> 2	H32	B32
4 -> 1	H41	B41
4 -> 2	H42	B42
4 -> 3	H43	B43

Old table in node 2

Cycle i

Flow	High	Low
1 -> 2	H12	B12
1 -> 3	H13	B13
1 -> 4	H14	B14
2 -> 3	H23	B23
2 -> 4	H24	B24
2 -> 1	H21	B21
3 -> 4	H34	B34
3 -> 1	H31	B31
3 -> 2	H32	B32
4 -> 1	H41	B41
4 -> 2	H42	B42
4 -> 3	H43	B43

New table in node 2

Fairness mechanism (3)

Actions in node 2:

- Determine fairness on link 2
 - Correct flows H13, H14 H23, H24, H21, H43
 - Correct flows L13, L14 L23, L24, L21, L43

Cycle	I-

Flow	High	Low	
1 -> 2		H12	L12
1 -> 3		H13	L13
1 -> 4		H14	L14
2 -> 3		H23	L23
2 -> 4		H24	L24
2 -> 1		H21	L21
3 -> 4		H34	L34
3 -> 1		H31	L31
3 -> 2		H32	L32
4 -> 1		H41	L41
4 -> 2		H42	L42
4 -> 3		H43	L43

Cycle i

Flow	High	Low	
1 -> 2		H12	L12
1 -> 3		H13	L13
1 -> 4		H14	L14
2 -> 3		H23	L23
2 -> 4		H24	L24
2 -> 1		H21	L21
3 -> 4		H34	B34
3 -> 1		H31	B31
3 -> 2		H32	B32
4 -> 1		H41	B41
4 -> 2		H42	B42
4 -> 3		H43	B43

Old table in node 2

New table in node 2

- Determine total amount of coordinated capacity over link 2
- Write new demand of node 2 into control packet
- Send control packet to next node at the scheduled time
- Transmit coordinated flows H23, H24, H21, L23, L24, L21
- Refrain from transmission during rest of the coordinated capacity
- Transmit by immediate access according to the stored rates for each destination

Fairness mechanism (4)

 Σ L Σ V Σ G Σ F

No correction

 Σ L : all low-traffic flows

 Σ V : all non-guaranteed high-traffic flows

 Σ G : all guaranteed high-traffic flows

 Σ F : all CBR traffic flows

 $V_i = H_i - G_i$: variable part of high-priority traffic flow

Fairness mechanism (5)

Fairness cycle

Traffic scenario

Transient throughput fairness

1→2 flows sharing a ring segment

2→3 flows sharing a ring segment

3→2 flows sharing a ring segment

