

Distributed Resource Reservation for RPR

Harmen R. van As and Roman Morawek Vienna University of Technology, Austria

Content

- Background and Purpose
- The Token Signalling Protocol
- Simulation Results

Background and purpose

Background

- Rings have limited hardware and interfaces
- This enables the fact that all nodes know all hardware and their states.
- This can be exploited to develop an efficient and decentralized signalling protocol

Purpose

- Controlled distribution of information and distributed resource reservation
 - SLAs (Service Level Agreements)
 - Bandwidth required for real-time connections with constant bit rates
 - OAM messages
 - Bit rates of each transmission link on the ring

Introduction

Token access

 Use of a token protocol to control distributed information exchange or distributed resource reservation

Single token circulating on the ring

Connection setup

If more than one token, connection setup collisions may occur

Connection setup with more than one token

Protocol

Connection setup (possible collisions)

If a couple of nodes set up a connection in parallel, a possible collision may occur. Set up collision: two or more connections cannot be set up because of resource conflicts

Connection setup (real collisions)

In case of a setup (real) collision, the connection must be set up again

Protocol

Simulations

Simulation results

- Delay of connection setup
- Portion of potential collisions
- Portion of real collisions
- Varying the number of nodes
- Varying the ring length
- High traffic dynamics

Note

Historically the model assumed that tokens were allocated within the OC-3 payload (transmission frames of 125 ms) and that token passing or token message passing could only occur in the next OC-3 payload.

The time unit is therefore given in frames (i.e. in units of 125 ms).

Delay of connection setup

 With a higher number of tokens the connection setup delay reduces because a token gets available earlier

Portion of potential collisions

 The portion of possible collisions increases with higher resource allocation on the ring

Portion of real collisions

Collisions only occur at high resource allocation on the ring

Varying the number of nodes

 With a higher number of nodes, the reduction in waiting time for a token becomes larger

Varying the ring length

 The ring length has a double effect on the connection setup delay when using more than one token because of the critical time one has to wait in this case

High traffic dynamics

- At high traffic dynamics (many connection setups and releases) the advantages of the token signalling protocol becomes apparent
- Main advantage of the multiple tokens: parallel handling of connection requests

