<table>
<thead>
<tr>
<th>Project</th>
<th>IEEE 802.20 Working Group on Mobile Broadband Wireless Access http://grouper.ieee.org/groups/802/20/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Channel Models and Performance Implications for OFDM-based MBWA</td>
</tr>
<tr>
<td>Date Submitted</td>
<td>2003-03-07</td>
</tr>
</tbody>
</table>
| Source(s) | Glenn D. Golden
135 Route 202/206 South
Bedminster, NJ 07921
Voice: 908-997-2000
Fax: 908-947-7090
Email: g.golden@flarion.com |
| Re: | IEEE 802.20 Session#1 Call for Contributions |
| Abstract | This presentation gives channel models and their implications for OFDM-based MBWA systems |
| Purpose | For informational purposes only |
| Notice | This document has been prepared to assist the IEEE 802.20 Working Group. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. |
| Release | The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.20. |
Channel Models and Performance Implications for OFDM-based MBWA

Glenn D. Golden

IEEE 802.20 MBWA WG
March 10-13, 2003
Outline

• *Proposed channel model ensemble*: UTRA (UMTS Terrestrial Radio Access).
• Overview of UTRA test environments and channel models.
• Effects of channel characteristics on OFDM PHY layer parameters.
• Typical range of OFDM PHY parameters that arise from adopting UTRA models.
Model Choice: Overview

- UTRA Test Configurations [1].
- Subset of full ITU-R M.1034 channel set.
- Defines three basic test environments, with two delay profile variations (“A” and “B”) on each:
 - Indoor Office
 - Outdoor-to-Indoor and Pedestrian
 - Vehicular
- Also includes non-specific “mixed” environment, combinations of the basic 3 types.
Channel model provisions

• Mean loss model and parameters (deterministic):
 \[L = F(R, f, ...) \]

• Shadow fading model and parameters (statistical):
 – Distr. model: log-normal \[\text{Parameter: } \sigma_{\text{lognorm}} \]
 – Pos’l corr. model: \[R(\Delta x) = e^{\ln 2|\Delta x|/d_{\text{cor}}} \] \[\text{Parameter: } d_{\text{cor}} \]

• Delay spread model
 – Ray specifications (delay, loss)
 – Doppler spectrum model
 – No numerical values specified for mobility rates.
Indoor Office: General characteristics

- Base stations and users located indoors
- Small cells
- Low transmit power
- Doppler set by walking speeds
Indoor Office: Path loss

\[L = 30 \log_{10} R + 18.3n^{\frac{(n+2)}{(n+1)-0.46}} + 37 \]

- **L**: Path loss (dB)
- **R**: Tx-Rx distance (m)
- **n**: Number of floors in path

- Shadowing: \(\sigma_{\text{lognorm}} = 12 \text{ dB} \)
Indoor Office: Delay profile
(Doppler spectrum: flat)
Pedestrian: General characteristics

- BSs with low antenna heights located outdoors; users located on streets or inside buildings/residences.
- Small cells
- Low transmit power
- Doppler set by walking speeds, with occasional higher rates due to vehicular reflections.
Pedestrian: Path loss

\[L = 40 \log_{10} R + 30 \log_{10} f + 49 \]

- **L**: Path loss (dB)
- **R**: Tx-Rx distance (m)
- **f**: Carrier frequency (MHz)

- **Shadowing**:
 \[\sigma_{\text{lognorm}} = 12 \text{ dB indoor} \]
 \[\sigma_{\text{lognorm}} = 10 \text{ dB outdoor} \]

- **Building penetration loss**:
 \[\mu = 12 \text{ dB}, \ \sigma = 8 \text{ dB} \]
Pedestrian: Delay profile
(Doppler spectrum: classic (Jakes))
Vehicular: General characteristics

• Base stations with roof antennas; users are in vehicles, walking, or stationary.
• “Larger” cells
• “Higher” transmit power
• Maximum Doppler rate set by vehicular speeds; lower values for walking and stationary users.
Vehicular: Path loss

\[L = 40(1 - 4 \cdot 10^{-3} \Delta h_b) \log_{10} R - 18 \log_{10} (\Delta h_b) + 21 \log_{10} f + 80 \]

- **L**: Path loss (dB)
- **R**: Tx-Rx distance (km)
- **\(\Delta h_b \)**: BS ant. height (m above avg. rooftop level)

- Valid for \(0 < \Delta h_b < 50 \) m
- Shadowing: \(\sigma_{\text{lognorm}} = 10 \) dB
Vehicular: Delay profile
(Doppler spectrum: classic (Jakes))
Proposed mobility rates

• Indoor: 3 km/h
• Pedestrian: 3, 30 km/h
• Vehicular: 0, 120, 250 km/h
Channel Characteristics → OFDM PHY Parameters

Time-domain view

- \(t \)
 - OFDM symbol duration (μs)
- \(c \)
 - Cyclic prefix (“CP”) length (μs)
- \(d \)
 - IDFT duration
- \(N \)
 - IDFT/DFT order
Channel Characteristics → OFDM PHY Parameters

Frequency domain view (schematic)

(Triangles represent main lobes of subcarrier freq-domain sinc functions)

\[W = Nd^{-1} \]

\[d^{-1} - t^{-1} = cd^{-1}t^{-1} \]
Channel Characteristics \implies OFDM PHY Parameters

Cyclic prefix constraint imposed by delay spread:

$$c : \quad \int_{0}^{c} |h(t)|^2 \, dt > (1 - \theta_c) \int_{0}^{\infty} |h(t)|^2 \, dt$$

- $h(t)$: Channel impulse response
- θ_c: ISI distortion threshold $0 < \theta_c < 1$

Typical range (SIR dependent): [2] $0.02 \leq \theta_c \leq 0.25$
Channel Characteristics \rightarrow OFDM PHY Parameters

IDFT duration constraint imposed by Doppler rate:

$$d : \quad d < \theta_d \tau_{chan}$$

τ_{chan} Channel coherence time

θ_d Quasi-stationarity threshold $0 < \theta_d < 1$

Typical range (SIR dependent): [3] \hspace{1cm} \theta_d \leq 10\%
UTRA Channel \Rightarrow OFDM PHY Parameters

Hypothetical MBWA system: Channel bandwidth $W = 1.25$ MHz, operating frequency 2 GHz, supporting mobility rate of 250 km/h. Desired per-subcarrier SINR $\approx 7 - 10$ dB.

- Set $\theta_c = 0.1$ [10 dB SIR]. To capture $(1 - \theta_c) = 90\%$ of impulse energy of worst-case delay spread UTRA channel (Vehicular B) requires $c \approx 10$ μs

- Set $\theta_d = 5\%$. Mobility rate of 250 kph at 2 GHz gives $D_{\text{max}} \approx 463$ Hz, $\tau_{\text{chan}} \approx 2160$ μs, $d = \theta_d \tau_{\text{chan}} \approx 108$ μs.
Channel-imposed constraints thus give

- **tone spacing:** \(d^{-1} \approx (108 \, \mu s)^{-1} \approx 9.2 \, \text{kHz} \)
- **number of tones:** \(N = Wd \approx 135 \)
References

