<table>
<thead>
<tr>
<th>Project</th>
<th>IEEE 802.20 Working Group on Mobile Broadband Wireless Access http://grouper.ieee.org/groups/802/20/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Basic Elements of a TDD MBWA Air Interface</td>
</tr>
<tr>
<td>Date Submitted</td>
<td>2003-03-12</td>
</tr>
</tbody>
</table>
| **Source(s)** | Marc Goldburg
ArrayComm, Inc.
Voice: +1-408-428-9080
Fax: +1-408-428-9083
Email: marcg@arraycomm.com |
| | Byung-Keun Lim
LG Electronics
Voice: +82-2-2005-2040
Fax: +82-2-2005-2311
Email: bklim@lge.com |
| | Kazuhiro Murakami
Kyocera Corporation
Voice: +81-45-943-6102
Fax: +81-45-943-6123
Email: kazuhiro_murakami@csg.kyocera.co.jp |
| **Re:** | MBWA Call for Contributions |
| **Abstract** | This contribution contains the same material as IEEE C802.20-03/14, formatted for presentation at the March 2003 802.20 meeting. |
| **Purpose** | This set of slides will be presented at the March 2003 802.20 meeting to explain the authors’ submission IEEE C802.20-03/14. |
| **Notice** | This document has been prepared to assist the IEEE 802.20 Working Group. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. |
| **Release** | The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.20. |
802.20 Service Vision

- High end-user data rates, 1+ Mbps
- High aggregate cell capacity, low net cost of delivery
- High spectral efficiency, operation in limited spectrum
- Mobile or portable use
- Reliable “last mile” link optimized for IP
- Manageable and predictable network: QoS, Security, ...
- Leverage existing IP networks, provisioning, billing, ...
- Standard IP devices, IP application transparency
802.20 Mission

- “Serve the PAR”
- PAR is MAC/PHY proxy for service vision

spectral efficiency (b/s/Hz/sector)

range (km)

802.20 target

existing wide-area mobile data systems

3
Proposal Overview

• **Broadband IP for the mobile environment**
 - robust adaptive modulation & coding, power control, ARQ
 - efficient messaging, in- and out-of-band control data
 - mobility/handover support
 - bandwidth on demand, QOS support for tiered services
 - authentication and privacy for security

• **Integral support for infrastructure adaptive antennas (AAs)**
 - $10\log_{10}M$ SNR improvement for higher range, data rates
 - interference cancellation, not averaging, for high spectral efficiency
 - spatial rake: reduced temporal equalizer complexity
 - no AAs at terminals to minimize cost, complexity, power
 - tight MAC/PHY coupling for efficient design
AA Implications for Air Interface

- Benefits highest with reciprocal up- and downlinks
 - TDD provides (nearly) reciprocal uplink and downlink
 - “uplink before downlink” emissions policy for spatial training

- Narrower (aggregate-able) carriers preferred
 - smaller numbers of interferers \(\Rightarrow\) better per-interferer suppression
 - spatial signature coherency bandwidth at, e.g., 2 GHz is \(<\ 1\ MHz\)

- Traffic and broadcast channels treated differently
 - only traffic channels benefit from full coherent gain of AAs
 - broadcast channels must be coded/lightweight for same link budget
Outline

- **Layered Architecture**
 - L1
 - frame and superframe structures
 - modulation and FEC
 - **L2 and Logical Channels**
 - logical channels, burst types
 - channel usage
 - L3
 - multiple access, resource allocation
 - security, QoS
- **Field Results**
- **Summary**
Layered Air Interface Organization

<table>
<thead>
<tr>
<th>Layer</th>
<th>Functionality</th>
</tr>
</thead>
</table>
| L3 | Session management
Resource management
Mobility management
Power control and link adaptation
Authentication |
| L2 | Reliable transmission
Logical to physical channel mapping
Bulk encryption |
| L1 | Frame and burst structure
Modulation and channel coding
Timing advance |
Outline

• Layered Architecture
 • L1
 • frame and superframe structures
 • modulation and FEC
 • L2 and Logical Channels
 • logical channels, burst types
 • channel usage
 • L3
 • multiple access, resource allocation
 • security, QoS
• Field Results
• Summary
L1: Frame Structure

- **Common to all carriers in system**
- **85 µs turnaround time ⇒ 12.7 km range**
 - >15 km possible by exploiting burst ramp up/down times
L1: Synchronization

- Wide area TDD systems should be synchronized
 - else downlink/uplink overlap causes significant interference

- Variety of base station (BS) synchronization options
 - GPS, clocks derived from backhaul, ...

- User terminals (UTs) typically synchronized over the air
 - by synchronizing to BS frame structure

- Significant benefits for interference management
 - with MAC, enable downlink interference management (more later)
L1: Modulation and Coding

- Fixed 500 kHz symbol rate
- 25% excess bandwidth → 625 kHz channel raster
- Adaptive modulation and coding
 - circular and rectangular modulations: BPSK to 24 QAM
 - variable coding rates from 0.5 b/Symbol to 4 b/Symbol
- ModClass: modulation/coding combination
 - 9 downlink ModClasses, 8 uplink ModClasses
 - roughly 1.5 dB separation between each class for fixed FER
- Low-order, low-rate ModClasses balance broadcast link
- All ModClasses available for data, link permitting
L1: Constellations

- Only $\pi/2$-BPSK and QPSK support mandatory
 - enables low-cost, power efficient terminals

<table>
<thead>
<tr>
<th>Modulation Order</th>
<th>Logical Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi/2$-BPSK</td>
<td>CCH, RACH, FACCH</td>
</tr>
<tr>
<td>QPSK</td>
<td>BCH, PCH</td>
</tr>
<tr>
<td>$\pi/2$-BPSK</td>
<td>TCH</td>
</tr>
<tr>
<td>QPSK</td>
<td>(under control of link adaptation)</td>
</tr>
<tr>
<td>8-PSK</td>
<td></td>
</tr>
<tr>
<td>12-QAM</td>
<td></td>
</tr>
<tr>
<td>16-QAM</td>
<td></td>
</tr>
<tr>
<td>24-QAM</td>
<td></td>
</tr>
</tbody>
</table>
L1: Forward Error Control

- Convolutional, block and shaping channel codes
 - puncturing and/or repeating as required for rate matching
- Bit interleaving within a burst
 - but not across bursts, too much latency
- CRC-16 across information bits of the payload
L1: Review

- **TDD/TDMA/FDMA organization with 5 ms frames**
 - multiple resources permit granular allocation, low latency
 - TDD well matched to adaptive antennas, asymmetric data

- **625 kHz carriers, constant symbol rate**
 - low complexity processing
 - good spatial coherence properties

- **Synchronized network**
 - over-the-air UT synchronization, external BS synchronization
 - predictable inter- and intra-cell interference

- **Adaptive modulation and coding**
 - provide robust link, options for inexpensive terminals
 - link budget matching of directive, non-directive transmissions
Outline

• Layered Architecture
• L1
 • frame and superframe structures
 • modulation and FEC
• L2 and Logical Channels
 • logical channels, burst types
 • channel usage
• L3
 • multiple access, resource allocation
 • security, QoS
• Field Results
• Summary
Logical Channel Types

<table>
<thead>
<tr>
<th>Name</th>
<th>Function</th>
<th>Uplink</th>
<th>Downlink</th>
<th>Directive</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCH</td>
<td>Cell broadcast and synchronization</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CCH</td>
<td>Registration</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PCH</td>
<td>Asynchronous downlink paging</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RACH</td>
<td>Asynchronous access, assignment</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FACCH</td>
<td>Link adaptation: ModClass, power</td>
<td></td>
<td>X</td>
<td>w/TCH</td>
</tr>
<tr>
<td>TCH</td>
<td>Traffic and associated messaging</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Logical Channel to Burst Mapping

<table>
<thead>
<tr>
<th>Burst Type</th>
<th>Symbol</th>
<th>Logical Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink bursts:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Synchronization</td>
<td>F</td>
<td>BCH</td>
</tr>
<tr>
<td>Timing Synchronization</td>
<td>T</td>
<td>BCH</td>
</tr>
<tr>
<td>Broadcast</td>
<td>B</td>
<td>BCH</td>
</tr>
<tr>
<td>Page</td>
<td>P</td>
<td>PCH</td>
</tr>
<tr>
<td>Standard Downlink</td>
<td>D</td>
<td>RACH, TCH, CCH, FACCH</td>
</tr>
<tr>
<td>Uplink Bursts:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Configuration Request</td>
<td>C</td>
<td>CCH</td>
</tr>
<tr>
<td>Standard Uplink</td>
<td>U</td>
<td>RACH, TCH, FACCH</td>
</tr>
</tbody>
</table>

- BCH consists of a sequence of F, T and B bursts
- PCH consists of a single P burst
- TCH, RACH, FACCH flow over sequences of U and D bursts
Broadcast CHannel (BCH)

• Downlink-only

• Allows UT to
 • gain coarse timing and frequency synchronization
 • determine the best BS with which to communicate

• Consists of F, T, and B bursts

• Limited directivity, low spatial gain hence
 • low order modulation, heavy coding to balance link
 • limited information to reduce resource consumption

• Transmitted via BCH superframe
BCH Superframe Structure

- Generally, all slots in network available for all logical channels
- Single exception is slot used for broadcast superframe

```
<table>
<thead>
<tr>
<th>Uplink</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink</td>
<td>F</td>
<td>C</td>
<td>T</td>
<td>C</td>
<td>B 0</td>
<td>C</td>
<td>B 1</td>
<td>C</td>
<td>B 2</td>
<td>C</td>
<td>B 3</td>
</tr>
</tbody>
</table>
```

SuperFrame 20 Frames
(Network-wide, periodic, occupancy: 1 slot/frame)

Frequency Synchronization
Timing Synchronization
Configuration Channels (CCH)
Broadcast Channels (BCH)
One frame/ BS group
Configuration CHannel (CCH)

- **Uplink and downlink**
- **Two primary purposes**
 - UT fine timing synchronization and power control
 - informs UT of base station channel organization
- **Two messages**
 - Up: On the uplink, Configuration Request (CR)
 - including burst power to aid in uplink power control
 - Down: On the downlink, Configuration Message (CM)
 - including channel organization at the base station
- **Message exchange via BCH superframe**
Paging CHannel (PCH)

- Downlink-only
- Informs inactive UTs of pending downlink data
- Can be spatially mux’ed with downlink TCH
- Heavily coded to compensate for lack of spatial gain
- Compact message format to minimize overhead
Random Access CHannel (RACH)

- Uplink and downlink
- Used for registration, asynchronous access & assignment
- Can be spatially mux’ed with PCH and TCH
- Carries multiple messages
 - Request Access (RA) in the uplink
 - Access Assignment (AA) in the downlink
- AA message contains
 - initial modulation and coding information for TCH
 - conventional channel assignment for TCH
 - spatial training sequence assignment for TCH
 - timing adjustment and initial power settings
Traffic CHannel (TCH)

- Uplink and downlink
- Mixed user data and control information via tagged types
- User data exchanged over TCH “streams”
 - contiguous sequence of uplink and downlink U and D bursts
 - U and D bursts allocated in paired fashion
 - U and D pairing provides path for ACKs
 - U and D pairing provides spatial training for users and interferers
- TCH streams can be aggregated within and across carriers
- Stream allocation according to demand, QoS, load
Fast Associated Control CHandel (FACCH)

- Associated with RACH and TCH
- Carries power control, link adaptation information
- Provides real time updates of
 - Available TX power overhead
 - Modulation format (“ModClass”)
- Recoverable at low SINR
 - Low-order modulated
 - Walsh-Hadamard coded
Example: Standard Downlink Burst

- Used for RACH, TCH, Downlink CCH, and FACCH
- Training sequences for spatial and temporal processing
- Standard Uplink burst structured similarly
- B, T, F, C, P non-directive, hence different training organization
Logical Channel Example: Data Exchange

- “Uplink before downlink” whenever possible
- Resources consumed only when exchanging data
L2 and Logical Channel Review

- Three classes of logical channels
 - BCH: UT independent broadcast
 - CCH, PCH, RACH, FACCH: UT dependent control
 - TCH: UT dependent mixed control and data

- Mix of dedicated and common burst types

- Burst structure, message ordering maximize training

- All physical resources available for data and/or control
 - except for BCH carrier/timeslot pair
Outline

• Layered Architecture
• L1
 • frame and superframe structures
 • modulation and FEC
• L2 and Logical Channels
 • logical channels, burst types
 • channel usage
• L3
 • multiple access, resource allocation
 • security, QoS
• Field Results
• Summary
L3: Multiple Access

• Definition: resource allocation among users
• Conventional channel is (carrier, timeslot) pair
• Basic resource for air interface is a triple
 • (carrier, timeslot, spatial index)
 • a “spatial channel”
• Spatial channels permit sharing of conventional channels
 • e.g., conv. channel with two TCH’s; TCH, RACH and PCH; ...
• Requires time, frequency, power, space resource allocation
 • as joint or separable problems
L3: Registration

- An association established by a UT with a BS
 - at UT power-up
 - prior to handing over to a new serving cell
- Exchange of fundamental information
 - BS and UT capabilities and configuration
 - mutual authentication, encryption initialization
- Typically bound to an end-user IP session
- Required for exchange of end-user data
 - via TCH streams, sequences of TCH packets
 - via TCH aggregates across timeslots or carriers
L3: Data Transport

- Two data delivery modes within a TCH stream
 - Unacknowledged Mode (UM)
 - Acknowledged Mode (AM), using ARQ

- UM and AM mux-ed within a stream via tagged data types

- ARQ
 - endpoints in L2 – at BS and UT -- minimizing latency
 - byte-oriented to accommodate flexible payload sizes, encryption

- Delivery over aggregated streams requires special care
 - L3 packet checksum
 - Packet sequencing and reordering
 - Packet fragmentation
L3: Quality of Service (QoS)

- **DiffServ model for policy provisioning and propagation**
 - Per-session QoS specified using DiffServ Code Points (DSCP)
 - Per-Hop Behaviors (PHB) are defined by a standard DiffServ API

- **BS and intermediate node schedulers enforce policy**
 - subject to available resources
 - subject to link conditions

- **QoS behaviors include**
 - per-session rate limits, per-session priority
 - soft resource partitioning among flow aggregates
L3: Security

• **Design goals**
 - mutual authentication and privacy
 - efficiency (speed, economy) in associated messaging
 - IP-centric solution comprising proven elements

• **Authentication**
 - mutual authentication of the infrastructure and the UT
 - ISO/IEC 9796 certificate based with RSA signature primitive
 - no per authentication interaction with back-end servers
L3: Security

• **Shared secret exchange via UT and BS public keys**
 - elliptic curve cryptography based PKI
 - certified public keys exchanged during authentication phase
 - shared secret exchange at authentication phase and subsequently

• **Bulk encryption using a stream cipher**
 - most appropriate with flexible air interface blocks
 - Ex: RC4, block cipher operating in Output Feedback (OFB) mode or Cipher Feedback (CFB) mode
 - supports variable length shared secret key
 - shared secret refreshment enforced both by the UT and the BS
 - proper diffusion practices
L3: Power Control & Link Adaptation

- Open and closed loop power control for TCH streams
- BS controlled via UT SINR and remaining power reports
- Initial settings from RACH exchange preceding a stream
- Ongoing signaling using FACCH and TCH header fields
- Link adapted for, e.g., 1% FER
L3: Air Interface Handover

- UT monitors and ranks BCH of surrounding BSs
 - aided by BCH superframe structure

- UT-directed, make-before-break
 - user traffic transits old serving BS while registering with new candidate serving BS
 - End-user session then routed via new serving BS

- Independent of end-user IP layer handover
 - (see C802.20-03/14 for IP handover discussion)
L3: Review

- **Basic resource is spatial channel**
 - (carrier, timeslot, spatial index) triple
 - created by adaptive antenna processing, resource allocation

- **Fast ARQ for reliable link**
 - endpoints at BS and UT to minimize retransmission time
 - byte oriented for variable length packets

- **QoS support**
 - per-session DiffServ policy definition and propagation model
 - radio PHB’s include rate-limiting, priority, aggregate partitions

- **Security**
 - authentication and privacy
 - comprised of standards-based elements

- **Mobility support**
 - make-before-break radio handover
 - IP layer handover treated independently
Outline

- **Layered Architecture**
- **L1**
 - frame and superframe structures
 - modulation and FEC
- **L2 and Logical Channels**
 - logical channels, burst types
 - channel usage
- **L3**
 - multiple access, resource allocation
 - security, QoS
- **Field Results**
- **Summary**
Field Results

- Air interface has been implemented and tested
- Urban trial to assess reuse < 1 performance
- Most challenging case: colocated terminals, LOS
- Reuse of ½ at peak data rate
Experiment Description

- **Experiment 1 (control case)**
 - reuse = 1
 - link established to 8 UTs with 8 carriers (total 5 MHz)
 - nominal uplink/downlink rates of 330 kbps/1 Mbps
 - each UT continuously aggregating timeslots on one carrier

- **Experiment 2**
 - reuse = ½
 - 4 carriers, each reused twice within the sector
 - configuration otherwise identical to control case
 - total throughput essentially identical to control case
Base Case: 8 Terminals, 8 Carriers

Average Data Rate [kbps]

<table>
<thead>
<tr>
<th></th>
<th>Downlink</th>
<th>Uplink</th>
</tr>
</thead>
<tbody>
<tr>
<td>UT#1</td>
<td>1,023</td>
<td>328</td>
</tr>
<tr>
<td>UT#2</td>
<td>964</td>
<td>329</td>
</tr>
<tr>
<td>UT#3</td>
<td>1,027</td>
<td>325</td>
</tr>
<tr>
<td>UT#4</td>
<td>892</td>
<td>331</td>
</tr>
<tr>
<td>UT#5</td>
<td>1,026</td>
<td>332</td>
</tr>
<tr>
<td>UT#6</td>
<td>1,025</td>
<td>328</td>
</tr>
<tr>
<td>UT#7</td>
<td>982</td>
<td>328</td>
</tr>
<tr>
<td>UT#8</td>
<td>1,027</td>
<td>328</td>
</tr>
<tr>
<td>Total</td>
<td>7,966</td>
<td>2,629</td>
</tr>
</tbody>
</table>
Reuse 1/2: 8 Terminals, 4 Carriers

- **Data rates unchanged**

Average Data Rate [kbps]

<table>
<thead>
<tr>
<th></th>
<th>Downlink</th>
<th>Uplink</th>
</tr>
</thead>
<tbody>
<tr>
<td>UT#1</td>
<td>975</td>
<td>331</td>
</tr>
<tr>
<td>UT#2</td>
<td>976</td>
<td>329</td>
</tr>
<tr>
<td>UT#3</td>
<td>1,020</td>
<td>332</td>
</tr>
<tr>
<td>UT#4</td>
<td>936</td>
<td>332</td>
</tr>
<tr>
<td>UT#5</td>
<td>979</td>
<td>333</td>
</tr>
<tr>
<td>UT#6</td>
<td>1,017</td>
<td>331</td>
</tr>
<tr>
<td>UT#7</td>
<td>1,025</td>
<td>332</td>
</tr>
<tr>
<td>UT#8</td>
<td>981</td>
<td>329</td>
</tr>
<tr>
<td>Total</td>
<td>7,909</td>
<td>2,649</td>
</tr>
</tbody>
</table>

- **10,558 kbps/2.5 MHz**
- **or 4.3 b/s/Hz/sector**
Outline

• Layered Architecture
• L1
 • frame and superframe structures
 • modulation and FEC
• L2 and Logical Channels
 • logical channels, burst types
 • channel usage
• L3
 • multiple access, resource allocation
 • security, QoS
• Field Results
• Summary
Summary

• Adaptive antennas to shift capacity/coverage tradeoff
 • enable true reuse < 1, provide interference suppression not averaging
 • provide benefits in noise-limited case, too
 • require tight integration with all aspects of design

• Proven temporal, spectral processing techniques
 • adaptive modulation and coding
 • ARQ
 • power control

• IP service impacts considered at all levels in design
 • uplink/downlink (a)symmetry, data rates, latency, ...
 • fast ARQ transparent to end-user traffic
 • standards-based QoS model

• Provides mobility and security
 • UT-directed, make-before-break handover
 • mutual authentication and privacy
 • standards-based
<table>
<thead>
<tr>
<th>Quantity</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duplex Method</td>
<td>TDD</td>
</tr>
<tr>
<td>Multiple Access Method</td>
<td>FDMA/TDMA/SDMA</td>
</tr>
<tr>
<td>Access Scheme</td>
<td>Collision avoidance, centrally scheduled</td>
</tr>
<tr>
<td>Carrier Spacing</td>
<td>625 kHz</td>
</tr>
<tr>
<td>Frame Period</td>
<td>5 ms</td>
</tr>
<tr>
<td>User Data Rate Asymmetry</td>
<td>3:1 down/up asymmetry at peak rates</td>
</tr>
<tr>
<td>Uplink Time Slots</td>
<td>3</td>
</tr>
<tr>
<td>Downlink Time Slots</td>
<td>3</td>
</tr>
<tr>
<td>Range</td>
<td>> 15 km</td>
</tr>
<tr>
<td>Symbol Rate</td>
<td>500 kbaud/sec</td>
</tr>
<tr>
<td>Pulse shaping</td>
<td>Root raised cosine</td>
</tr>
<tr>
<td>Excess channel bandwidth</td>
<td>25%</td>
</tr>
<tr>
<td>Modulation and coding</td>
<td>- Independent frame-by-frame selection of uplink and downlink</td>
</tr>
<tr>
<td></td>
<td>constellation + coding.</td>
</tr>
<tr>
<td></td>
<td>- 8 uplink constellation + coding classes</td>
</tr>
<tr>
<td></td>
<td>- 9 downlink constellation + coding classes</td>
</tr>
<tr>
<td></td>
<td>- Constant modulus and rectangular constellations</td>
</tr>
<tr>
<td>Quantity</td>
<td>Value</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Power Control</td>
<td>Frame-by frame uplink and downlink open and closed loop</td>
</tr>
<tr>
<td>Fast ARQ</td>
<td>Yes</td>
</tr>
<tr>
<td>Carrier and timeslot aggregation</td>
<td>Yes</td>
</tr>
<tr>
<td>QoS</td>
<td>DiffServ policy specification, supporting rate limiting, priority,</td>
</tr>
<tr>
<td></td>
<td>partitioning, etc.</td>
</tr>
<tr>
<td>Security</td>
<td>Mutual UT and BS authentication, encryption for privacy</td>
</tr>
<tr>
<td>Handover</td>
<td>UT directed, make-before-break</td>
</tr>
<tr>
<td>Resource Allocation</td>
<td>Dynamic, bandwidth on demand</td>
</tr>
</tbody>
</table>