Project	**IEEE 802.20 Working Group on Mobile Broadband Wireless Access**
Title | **QFDD Performance Report 2 Presentation**
Date Submitted | **2005-11-15**
Source(s) | Jim Tomcik
Qualcomm, Incorporated
5775 Morehouse Drive
San Diego, CA, 92121
Voice: 858-658-3231
Fax: 858-658-2113
E-Mail: jtomcik@qualcomm.com
Re: | **MBWA Call for Proposals**
Abstract | This contribution (part of the QFDD proposal package for 802.20), contains the QFDD Performance Report 2 Presentation slide set.
Purpose | For consideration of 802.20 in its efforts to adopt an FDD proposal for MBWA.
Notice | This document has been prepared to assist the IEEE 802.20 Working Group. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.
Release | The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.20.
FDD Performance Evaluation Report II

Jim Tomcik
jtomic@qualcomm.com
Outline

• Report II Requirements:
 – Traffic mix simulations.
 • Overhead channel modeling.
 • QoS arbitration.
 • Performance of each individual QoS class.
 – Mobility and handoff

• Performance of Salient Features:
 – Antenna techniques.
 • MIMO Multiple Code Word with Successive Interference Cancellation.
 • Precoding.
 – System enhancements.
 • Quasi-Orthogonal Reverse Link (QORL).
 • Fractional Frequency Reuse (FFR).
 • Spatial Division Multiple Access (SDMA).
Overhead Channel Dimensioning

- Simulated a packet-by-packet scheduler to generate assignment statistics.
- SSCH: 12 total assignments, power control bits for 200 users, and ACK/NACK for 30 RL channels → 22% FL overhead.
- Resource utilization is shown not to be affected by 8 FLAB constraints.
Traffic Mix Assumptions

<table>
<thead>
<tr>
<th></th>
<th>FL Evaluation</th>
<th>RL Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>QoS Admission Control</td>
<td>30-30-30-10% Per-sector FTP-HTTP-NRTV-VOIP</td>
<td>VOIP</td>
</tr>
<tr>
<td>TCP Packet Size</td>
<td>1500 bytes</td>
<td>N/A</td>
</tr>
<tr>
<td>Maximum RLP Transmissions</td>
<td>1(VOIP), 2(Others)</td>
<td>1</td>
</tr>
<tr>
<td>Simulation Time</td>
<td>5:00 minutes</td>
<td>5:00 minutes</td>
</tr>
</tbody>
</table>
Channel Mix Test

- Channel models:
 - Suburban macro pedB 3 Km/h
 - Suburban macro vehB 120 Km/h
 - Suburban macro mix.
 - Urban micro mix.
- 19 cell wrap-around layout.
- Traffic mix:
 - 30-30-30-10
 - 10 users per sector.
- Conclusions:
 - Served data rate matches the offered data rate.
 - Different channel models have similar performances.
Fairness Among BE Flows

• Simulation setup:
 – Suburban macro mix.
 – Loading level: 80 users/sector
 – EF and AF flows is scheduled with higher priority than the BE flows.
 – Proportional fairness is enforced among BE flows.

• Conclusion:
 – BE flows meet the 802.20 fairness.
Latency vs. Load

- Flows with QoS reservation:
 - Mean latency of VOIP and NRTV satisfy QoS for all loading level.
- Best effort flows:
 - HTTP and FTP latency increases as load increases.
Download Speed vs. Load

• Simulation setup:
 – SIMO 1x2
• Light loading
 – FTP: 3 Mbps.
 – HTTP: 500 Kbps.
• Heavy loading
 – FTP and HTTP rate goes to 0 when NRTV starts to suffer.
 – NRTV and VOIP QoS priority is enforced properly.
MIMO Download Speed

- Simulation setup:
 - MIMO 4x4 with single codeword decoding and linear MMSE receiver.
- MIMO 4x4 @160 users/sector has better FTP/HTTP download speed than SIMO 1x2 system @ 60 users/sector.
NRTV Outage Trace

- Latency trace of the worst user at high system loading.
- One connection briefly reaches the 5 seconds buffer underflow condition.
Voice Latency vs. Load

- RL voice traffic is simulated with 20 voice users/sector to approximate the RL traffic of a 200 users/sector with the specified traffic mix.
- Maximum FL mean user latency is less than 12 ms @ 180 users/sector.
- Maximum RL mean user latency is less than 13 ms.
Voice E-Model Score

- Mean user voice packet error rate is low for all load.
- Worst user experiences close to 2% packet error rate.
- E-Model score reflects the packet errors experienced by users in poor channel condition.
Outline

• Report II Requirements:
 – Traffic mix simulations.
 • Overhead channel modeling.
 • QoS arbitration.
 • Performance of each individual QoS class.
 – Mobility and handoff

• Performance of Salient Features:
 – Antenna techniques.
 • MIMO Multiple Code Word with Successive Interference Cancellation.
 • Precoding.
 – System enhancements.
 • Quasi-Orthogonal Reverse Link (QORL).
 • Fractional Frequency Reuse (FFR).
 • Spatial Division Multiple Access (SDMA).
Mobility and Handoff

- Handoff decision
 - FL: based on FL pilot measurements
 - RL: based on R-CQICH erasure indicators

- Handoff indication to the desired sector
 - FL: using R-CQICH
 - RL: using R-REQCH

- Handoff completion
 - When AT receives assignment from the new sector
Outage and Connection Drop

- Current serving sector continues to serve the terminal during L1 handoff signaling (and even part of L2 handoff negotiation).
- Outage may happen only during FL handoff (inter-cell).
- Outage period is equal to one-way backhaul delay.
- Connection drop probability is practically zero.

![Outage Period for FL Inter-Cell Handoff](image)
Mobility Simulation Models

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Interpretation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Site-to-site distance</td>
<td>1000 m</td>
</tr>
<tr>
<td>EdgeLoss</td>
<td>Sudden propagation loss at cell edge for model 2</td>
<td>3, 6, 9 dB</td>
</tr>
<tr>
<td>V</td>
<td>Mobile Speed</td>
<td>3, 30, 120 Km/h</td>
</tr>
<tr>
<td>D_{corr}</td>
<td>Shadow Fading Corr. Distance</td>
<td>30 m</td>
</tr>
<tr>
<td>D_0</td>
<td>Distance of starting point from A in paths 1 and 2 (same as distance of ending point from B)</td>
<td>30 m</td>
</tr>
<tr>
<td>D_3</td>
<td>Total distance covered by terminal in path 3</td>
<td>1000 m</td>
</tr>
<tr>
<td>FilterTimeConstant</td>
<td>SINR and C/I filter time constant for active set management and handoff decision</td>
<td>100 msec</td>
</tr>
<tr>
<td>AddThreshold</td>
<td>Active set add threshold (on filtered SINR)</td>
<td>-7 dB</td>
</tr>
<tr>
<td>DropThreshold</td>
<td>Active set drop threshold (on filtered SINR)</td>
<td>-9 dB</td>
</tr>
<tr>
<td>DropTimer</td>
<td>Active set drop timer (if the SINR of an active set sector remains below DropThreshold for this period, it is dropped from the active set.)</td>
<td>2 sec</td>
</tr>
<tr>
<td>FLHandoffHysteresis</td>
<td>Forward link handoff hysteresis (on filtered effective C/I)</td>
<td>2 dB</td>
</tr>
<tr>
<td>RLHandoffHysteresis</td>
<td>Reverse link handoff hysteresis (on CQI erasure indicator rate)</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Mobility Simulations, Models 2

Geometry trace for Active Sectors: Model 2, 3dB Edge Loss

Filtered Effective C/I Trace for Active Sectors, Model 2, 3dB Edge Loss

- System Time (seconds)
- Geometry (dB)
- EffCtoI (dB)

Legend:
- SectorID: 0
- SectorID: 6
- SectorID: 20
- SectorID: 38
- SectorID: 40

Legend:
- SectorID: 0
- SectorID: 5
- SectorID: 6
- SectorID: 20
- SectorID: 26
- SectorID: 27
- SectorID: 38
- SectorID: 40
- SectorID: 41
- SectorID: 49
Handoff Delay Distributions

FL Handoff Delay
- Intra-Cell, Avg. = 8.9 msec
- Inter-Cell, Avg. = 27.1 msec
- Overall, Avg. = 25.7 msec

RL Handoff Delay
- Intra-Cell, Avg. = 9.3 msec
- Inter-Cell, Avg. = 10.2 msec
- Overall, Avg. = 10.1 msec
Idle State Performance

• Duty cycle in idle state
 – Required to read 8 OFDM symbols every page period

<table>
<thead>
<tr>
<th>Paging period in superframes</th>
<th>Paging period in seconds</th>
<th>Duty Cycle (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.04588</td>
<td>2.3</td>
</tr>
<tr>
<td>16</td>
<td>0.367</td>
<td>0.29</td>
</tr>
<tr>
<td>64</td>
<td>1.468</td>
<td>0.072</td>
</tr>
<tr>
<td>128</td>
<td>2.94</td>
<td>0.036</td>
</tr>
</tbody>
</table>

• Access delay
 – Access opportunity occurs every six frames (5.5msec)

• Paging overhead: 1.55%
 – Assuming 20 pages/second/sector, 5 MHz system
 – QuickPage: 1.25% and Paging on traffic channel: 0.3%
Outline

• Report II Requirements:
 – Traffic mix simulations.
 • Overhead channel modeling.
 • QoS arbitration.
 • Performance of each individual QoS class.
 – Mobility and handoff

• Performance of Salient Features:
 – Antenna techniques.
 • MIMO Multiple Code Word with Successive Interference Cancellation.
 • Precoding.
 – System enhancements.
 • Quasi-Orthogonal Reverse Link (QORL).
 • Fractional Frequency Reuse (FFR).
 • Spatial Division Multiple Access (SDMA).
MCW vs. SCW

- Performance captures rate prediction, HARQ, coding and channel estimation performance.
- Channel model: pedB@3km/hr,
- Spatial correlation:
 - suburban macro, AoD: 50 degree; AS: 2 degree,
 - Antenna configuration: 4x4 with 10 λ spacing at AP and 0.5 λ spacing at AT.
FDD MIMO Precoding Capacity Study

- Gap to capacity 3 dB to model coding and channel estimation loss.
- Precoding codebook size: 64
- Feedback over 5 MHz channel.
- Channel model: pedB@3km/hr;
- No spatial correlation, antenna configuration: 4x2
Outline

• Report II Requirements:
 – Traffic mix simulations.
 • Overhead channel modeling.
 • QoS arbitration.
 • Performance of each individual QoS class.
 – Mobility and handoff

• Performance of Salient Features:
 – Antenna techniques.
 • MIMO Multiple Code Word with Successive Interference Cancellation.
 • Precoding.
 – System enhancements.
 • Quasi-Orthogonal Reverse Link (QORL).
 • Fractional Frequency Reuse (FFR).
 • Spatial Division Multiple Access (SDMA).
Simulation Numerology

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth of Operation</td>
<td>5MHz</td>
</tr>
<tr>
<td>FFT Size</td>
<td>512</td>
</tr>
<tr>
<td>Chip rate</td>
<td>4.9152 Mcps</td>
</tr>
<tr>
<td>Subcarrier spacing</td>
<td>9.6kHz</td>
</tr>
<tr>
<td>Guard carriers</td>
<td>32 subcarriers</td>
</tr>
<tr>
<td>Cyclic Prefix</td>
<td>6.51 μs</td>
</tr>
<tr>
<td>Windowing Duration</td>
<td>3.26 μs</td>
</tr>
<tr>
<td>OFDM Symbol Duration (For 6.51μs CP)</td>
<td>113.93 μs</td>
</tr>
</tbody>
</table>
Quasi-Orthogonal Reverse Link

- Antenna configuration: 1x4 (diversity antennas)
- Channel model: pedB@3km/h, vehA@30km/h.
- Spatial correlation: urban micro (500m site-to-site distance).
- MMSE
 - Estimate spatial structure of all intra-sector users.
 - Additional estimation loss due to QORL is modeled.
 - Other sector interference is modeled as spatially uncorrelated.
- Results are conservative
 - Same multiplexing order for all users.
 - No user clustering has been implemented in simulations.

<table>
<thead>
<tr>
<th>Sector</th>
<th>Throughput (Kbps)</th>
<th>Q = 1</th>
<th>Q = 2</th>
<th>QORL Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>PedB at 3 Km/h</td>
<td>5716</td>
<td>7251</td>
<td></td>
<td>27%</td>
</tr>
<tr>
<td>VehA at 30 Km/h</td>
<td>5646</td>
<td>6990</td>
<td></td>
<td>24%</td>
</tr>
</tbody>
</table>
Fractional Frequency Reuse

- Partial loading range: 0 – 66%.
- 500 meters site-to-site distance, urban micro propagation loss.
Fractional Frequency Reuse

- Antenna configuration: 1x2.
- Channel model: urban macro – Ped B
- Partial loading range: 0 – 50%.
- FL simulations with proportional fairness scheduling.

<table>
<thead>
<tr>
<th></th>
<th>1/1 Reuse</th>
<th>FFR 11% PL</th>
<th>FFR 22% PL</th>
<th>FFR 33% PL</th>
<th>FFR 50% PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalized Sector Throughput</td>
<td>1.00</td>
<td>1.02</td>
<td>0.98</td>
<td>0.92</td>
<td>0.76</td>
</tr>
<tr>
<td>Normalized 5% User Spectral efficiency</td>
<td>1.00</td>
<td>1.27</td>
<td>1.37</td>
<td>1.69</td>
<td>2.00</td>
</tr>
</tbody>
</table>
FL SDMA

- Channel model: pedB@ 3km/h.
- Spatial correlation: suburban macro.
- Codebook size: 2
- Users select one beam at the beginning of each simulation run.
- MMSE: spatial processing based on estimate of spatial structure of intra-sector and inter-sector interference.

<table>
<thead>
<tr>
<th>Sector Throughput (Kbps) and Gain over Baseline System</th>
<th>SDMA</th>
<th>Baseline FDD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1km BS to BS Suburban Macro PedB 3km/h</td>
<td>4x2</td>
<td>1x2</td>
</tr>
<tr>
<td></td>
<td>4x4</td>
<td>1x4</td>
</tr>
<tr>
<td></td>
<td>0.5λ</td>
<td>0.5λ</td>
</tr>
<tr>
<td>MRC</td>
<td>MMSE</td>
<td>MRC</td>
</tr>
<tr>
<td>MRC</td>
<td>MMSE</td>
<td>MRC</td>
</tr>
<tr>
<td>8709 (47%)</td>
<td>10431 (76%)</td>
<td>11571 (49%)</td>
</tr>
<tr>
<td>15155 (96%)</td>
<td>5912</td>
<td>7740</td>
</tr>
</tbody>
</table>