IEEE 802.20 Working Group on Mobile Broadband Wireless Access

<http://grouper.ieee.org/groups/802/20/>

<table>
<thead>
<tr>
<th>Project</th>
<th>IEEE 802.20 Working Group on Mobile Broadband Wireless Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>MBTDD 625k-MC Mode (BEST-WINE) Performance Report 2 Presentation</td>
</tr>
<tr>
<td>Date Submitted</td>
<td>2006-JAN-13</td>
</tr>
<tr>
<td>Source(s)</td>
<td>Radhakrishna Canchi KTRC, 2480 N. First Street #280 San Jose, CA 95131</td>
</tr>
<tr>
<td></td>
<td>Kazuhiro Murakami KYOCERA, 2-1-1 Kagahara, Tsuzuki-ku, Yokohama, KANAGAWA 224-8502, JAPAN</td>
</tr>
<tr>
<td></td>
<td>Minako Kitahara KYOCERA, 2-1-1 Kagahara, Tsuzuki-ku, Yokohama, KANAGAWA 224-8502, JAPAN</td>
</tr>
<tr>
<td>Re:</td>
<td>MBWA Call for Proposal</td>
</tr>
<tr>
<td>Abstract</td>
<td>This document presents the Technology Performance and Evaluation Criteria Report 2 of the Technology Proposal MBTDD 625k-MC for IEEE 802.20 MBWA</td>
</tr>
<tr>
<td>Purpose</td>
<td>To discuss and Adopt MBTDD 625kHz MC Mode for Draft Specifications of IEEE802.20 MBWA</td>
</tr>
<tr>
<td>Notice</td>
<td>This document has been prepared to assist the IEEE 802.20 Working Group. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.</td>
</tr>
<tr>
<td>Release</td>
<td>The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.20.</td>
</tr>
</tbody>
</table>

Notice:

To discus and Adopt MBTDD 625kHz MC Mode for Draft Specifications of IEEE802.20 MBWA

Purpose:

To discuss and Adopt MBTDD 625kHz MC Mode for Draft Specifications of IEEE802.20 MBWA

Notice:

This document has been prepared to assist the IEEE 802.20 Working Group. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release:

The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.20.

Patent Policy:

MBTDD 625k-MC Mode
(BEST-WINE: Broadband Mobile ESpaTial Wireless InterNet AccEss)
Performance Report 2 Presentation

IEEE 802.20 Plenary Meeting
Hawaii
January 16-19, 2006
Outline of Presentation

- System Model
- Link level Simulation
- System Level Simulation
- Traffic
 - Traffic Calibration
 - Traffic Mix and Channel Mix
 - Traffic Mix and Channel Mix
- Mobility-Handover Performance
- Overhead Channels
- Practical System results
System Model
PHY and MAC Layer information

- Channel Configuration

<table>
<thead>
<tr>
<th>Items</th>
<th>Symbol rate</th>
<th>Frame Length</th>
<th>Carrier space</th>
<th>Multiple Access</th>
<th>Duplexing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>500 ksps</td>
<td></td>
<td>625 kHz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Uplink Time Slots
 - Length: 545 us
 - Payload: 182 symbols

- Downlink Time Slots
 - Length: 1090 us
 - Payload: 494 symbols

- Frequency Configuration
 - 625 kHz
 - 2.5 MHz
Link Level simulation

- Modulation Coding Class

<table>
<thead>
<tr>
<th>ModClass</th>
<th>Modulation Method</th>
<th>Down Link(Kbps)</th>
<th>Up Link(Kbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Data Rate /Slot</td>
<td>Data Rate /Carrier</td>
</tr>
<tr>
<td>0</td>
<td>BPSK</td>
<td>35</td>
<td>106</td>
</tr>
<tr>
<td>1</td>
<td>BPSK</td>
<td>50</td>
<td>149</td>
</tr>
<tr>
<td>2</td>
<td>QPSK</td>
<td>82</td>
<td>245</td>
</tr>
<tr>
<td>3</td>
<td>QPSK</td>
<td>126</td>
<td>379</td>
</tr>
<tr>
<td>4</td>
<td>8PSK</td>
<td>162</td>
<td>485</td>
</tr>
<tr>
<td>5</td>
<td>8PSK</td>
<td>198</td>
<td>595</td>
</tr>
<tr>
<td>6</td>
<td>12QAM</td>
<td>262</td>
<td>787</td>
</tr>
<tr>
<td>7</td>
<td>16QAM</td>
<td>307</td>
<td>922</td>
</tr>
<tr>
<td>8</td>
<td>24QAM</td>
<td>354</td>
<td>1061</td>
</tr>
<tr>
<td>9</td>
<td>32QAM</td>
<td>378</td>
<td>1133</td>
</tr>
<tr>
<td>10</td>
<td>64QAM</td>
<td>498</td>
<td>1493</td>
</tr>
</tbody>
</table>
Basic PHY layer (link level) information

- Link Level simulation Parameters
 - TDD /TDMA system with 3 timeslot structure
 - BS antenna number 12 antennae
 - UT antenna numbers
 - Antennas used for transmission : 1
 - Antennas used of receiving: 4
 - Adaptive Array Antenna Algorithm : MMSE
Pedestrian A – 3km/hr (Uplink)
Pedestrian A – 3km/hr (Uplink)

![Graph showing throughput vs. SINR for different modulation schemes at 3km/hr]](image-url)
Pedestrian A – 3km/hr (Downlink)
Pedestrian A – 3km/hr (Downlink)
Vehicular B – 120km/hr (Uplink)
Vehicular B – 120km/hr (Uplink)
Vehicular B – 120km/hr (Downlink)
Vehicular B – 120km/hr (Downlink)

![Graph showing Throughput vs SINR for various modulations at 120km/hr](image)

- **Throughput [kbps]**
- **SINR [dB]**

- **120km/h mod10**
- **120km/h mod9**
- **120km/h mod8**
- **120km/h mod7**
- **120km/h mod6**
- **120km/h mod5**
- **120km/h mod4**
- **120km/h mod3**
- **120km/h mod2**
- **120km/h mod1**
- **120km/h mod0**
Vehicular B – 250km/hr (Uplink)
Vehicular B – 250km/hr (Uplink)

![Graph showing throughput vs. SINR for different modulation schemes at 250km/hr](image-url)
Vehicular B – 250km/hr (Downlink)
Vehicular B – 250km/hr (Downlink)
System Level Simulations
Traffic Performance in System Level Simulation
Traffic Model Calibration - HTTP

Main File Object Size

Embedded Object Size

Size (bytes)

Size (bytes)
Traffic Model Calibration - HTTP

Embedded objects per page

- CDF of embedded objects per page as a function of the number of embedded objects.

Reading time

- CDF of reading time as a function of time in seconds.
Traffic Model Calibration - FTP

File size

Reading time

![File size CDF](chart1.png)

![Reading time CDF](chart2.png)
Traffic Model Calibration - NRTV

File size

Interarrival time

Packet size (bytes)

Time (msec)
Traffic Model Calibration - NRTV

Domestic Network delay

International Network delay
Traffic Model Calibration - HTTP

Main File Object Size

![CDF plot for Main File Object Size]

Embedded Object Size

![CDF plot for Embedded Object Size]
Traffic Model Calibration - HTTP

Embedded objects per page

![CDF plot for embedded objects per page](image1)

Reading time

![CDF plot for reading time](image2)

- **X-axis**: Number of embedded objects
- **Y-axis**: CDF

- **X-axis**: Time (seconds)
- **Y-axis**: CDF
Traffic Model Calibration - FTP

File size

Reading time

Size (bytes)

File size

Reading time

Time (seconds)
Traffic Model Calibration - NRTV

File size

Packet size (bytes)

Interarrival time

Time (msec)
Traffic Model Calibration - NRTV

Domestic Network delay

International Network delay
VoIP Performance – Delay vs. R-value

![Graph showing Delay vs. R Value]

- **Uplink**
- **Downlink**
FTP Performance

FTP Traffic Scenario (3 traffic spatial channels per conventional channel)

![Graph showing FTP performance with number of users vs. total downlink throughput in kbps.]
FTP-HTTP Performance

Mixed Traffic (FTP and HTTP) Scenario – (3 traffic spatial channels per conventional channel)
TCP-HTTP Uplink Performance

HTTP scenario—(3 traffic spatial channels per conventional channel)
TCP-HTTP Downlink Performance

HTTP scenario—(3 traffic spatial channels per conventional channel)
VoIP Performance – R-value vs. Packet loss

Packet loss vs. R Value

Packet loss [%] vs. R Value

- Uplink
- Downlink
HTTP and VoIP users

Data rate of HTTP users

![Graph showing cumulative probability of data rate for HTTP users]
HTTP and VoIP users

Voice quality with varying HTTP users

Uplink R values as a function of number of HTTP users
(24 voice users)

Downlink R values as a function of number of HTTP users
(24 voice users)
Traffic Mix

<table>
<thead>
<tr>
<th>Traffic Category</th>
<th>Application</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Effort</td>
<td>FTP</td>
<td>30</td>
</tr>
<tr>
<td>Interactive</td>
<td>Web browsing</td>
<td>30</td>
</tr>
<tr>
<td>Streaming</td>
<td>Video streaming</td>
<td>30</td>
</tr>
<tr>
<td>Real-time</td>
<td>VoIP</td>
<td>10</td>
</tr>
</tbody>
</table>
System Level Simulation Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS antenna</td>
<td></td>
</tr>
<tr>
<td>Number of antennas</td>
<td>12</td>
</tr>
<tr>
<td>Antenna separation</td>
<td>0.5 λ</td>
</tr>
<tr>
<td>UT antenna</td>
<td></td>
</tr>
<tr>
<td>Number of antennas</td>
<td>4</td>
</tr>
<tr>
<td>Antenna separation</td>
<td>0.5 λ</td>
</tr>
<tr>
<td>Layout</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19BS with 3sector each</td>
</tr>
<tr>
<td>max Tx power at BS</td>
<td>39dBm/12ant</td>
</tr>
<tr>
<td>max Tx power at UT</td>
<td>27dBm</td>
</tr>
<tr>
<td>BS antenna gain</td>
<td>17dBi</td>
</tr>
<tr>
<td>UT antenna gain</td>
<td>0dBi</td>
</tr>
<tr>
<td>BS NF</td>
<td>5dB</td>
</tr>
<tr>
<td>UT NF</td>
<td>10dB</td>
</tr>
<tr>
<td>Temperature</td>
<td>15°C</td>
</tr>
<tr>
<td>BS cable loss</td>
<td>3dB</td>
</tr>
<tr>
<td>UT body loss</td>
<td>3dB</td>
</tr>
<tr>
<td>Simulation bandwidth</td>
<td>2.5MHz (4 carriers) (1 carrier= 625kHz)</td>
</tr>
</tbody>
</table>
Channel Mix

Suburban macro channel mix

<table>
<thead>
<tr>
<th>Channel PDP Models</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>User speed (km/h)</td>
<td>3</td>
<td>30</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Probability</td>
<td>0.20</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Urban micro channel mix

<table>
<thead>
<tr>
<th>Channel PDP Models</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>User speed (km/h)</td>
<td>3</td>
<td>30</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Probability</td>
<td>0.29</td>
<td>0.14</td>
<td>0.14</td>
<td>0.29</td>
</tr>
</tbody>
</table>
Mobility Model - Handoff performance

- One mobile moving in a straight line from a location close to one BS to a location close to destination BS
Handoff distance and Handoff delay
Overhead channels-Paging Channel

![Diagram showing Paging Channel with Implied Burst and Diversity Burst]
Overhead channels - Paging Channel

Detection statistics for PCH (Desired burst present – 0Hz fading channel)

Detection statistics for PCH (Desired burst, 0Hz fading channel, 2 slot diversity)
Appendix

Practical System Results
Total Throughput : 21.011Mbps
Users : 21
Average data rate : 1Mbps/user
Practical System Results - Yokohama
Practical System Results - Yokohama

Handover Test

48Km/h

1Mbps
Practical System Results - Yokohama

Traffic Mix

- Carrier: 4 (with 3 spatial channels)
- BS: 1 (2.5MHz)
- UT: 34
 - FTP: 10 users
 - Video Streaming: 10 users
 - HTTP: 10 users
 - VoIP: 4 users

- Ftp: Data of 100Mbyte was continuously downloaded.
- Video: 5 mins of content requiring a data rate more than 450kbps was repeated viewed using real player.
- HTTP: 22 pages were viewed repeatedly. Each page was viewed for 6secs after being displayed.
Practical System Results - Yokohama

Traffic Mix

Throughput [bytes/sec]

FTP
Video Stream
Web Browsing
VoIP Stream

Traffic Mix

Throughput [bytes/sec]

FTP
Video Stream
Web Browsing
VoIP Stream