

Project	IEEE 802.20 Working Group on Mobile Broadband Wireless Access < <u>http://grouper.ieee.org/groups/802/20/</u> >					
Title	LDPC Code Proposal – Technology Overview					
Date Submitted	2007-03-05 (March 5, 2007)					
Sources:	Sung-Eun Park, Seunghoon Choi Samsung Electronics, Suwon, Korea	Email : <u>{se.park, seunghoon.choi}</u> @samsung.com				
	Thierry Lestable Samsung Electronics Research Institute, UK	Email : <u>thierry.lestable@samsung.com</u>				
	Anna Tee Samsung Telecommunications America	Voice: 1 (972) 761-7437 Email: <u>atee@sta.samsung.com</u>				
Re:	IEEE 802.20 Call for Proposal					
Abstract	This document proposes an LDPC coding scheme for Mobile Broadband Wireless Access Systems.					
Purpose	For consideration and adoption as a feature su	pported by 802.20 standard				
Notice	This document has been prepared to assist the IEEE 802.20 Working Group. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.					
Release	The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.20.					
Patent Policy	The contributor is familiar with IEEE patent policy, as outlined in < <u>http://standards.ieee.org/guides/opman/sect6.html#6.3</u> > and in <i>U</i> < <u>http://standards.ieee.org/board/pat/guide.html</u> >.	Section 6.3 of the IEEE-SA Standards Board Operations Manual Inderstanding Patent Issues During IEEE Standards Development				

802.20 LDPC Code Proposal

Sung-Eun Park, Seunghoon Choi, Thierry Lestable, Anna Tee

IEEE 802.20 Plenary Meeting Orlando, FL, USA March 11-16, 2007

Outline

- Introduction
- A Proposed LDPC Code Structure
 - Structured LDPC Code
 - Multi-Edge-Type LDPC code
 - Code Length Flexibility
 - LDPC Design for HARQ transmission
 - Efficient Encoding Algorithm
- Packet Formats
- Performance Comparison
- Conclusions

- Current 802.20 Air Interface [1] supports two channel coding schemes
 - Rate 1/5 Turbo code (PCCC) for large packet size (k > 128 bits)
 - Rate 1/3 Convolutional code for small packet size (k \leq 128 bits)
- Low-Density Parity-Check (LDPC) code is proposed as an optional coding scheme for high data rates (large packet size)
 - Efficient support of Type II HARQ (Incremental Redundancy)
 - Similar or better performance than Turbo codes through all HARQ retransmissions
 - Highly parallelizable encoder/decoder architectures, thus resulting in highthroughput encoder/decoder implementations

- LDPC codes are fully defined by a sparse parity-check matrix
 - Can also be represented by bipartite graph (Tanner graph)
 - Two types of nodes (variable and check nodes) and edges
- LDPC codes can be decoded by Message-Passing algorithms
 - Pearl's Belief-Propagation (BP) algorithm which passes beliefs in the form of Log-Likelihood Ratios (LLRs) along the edges of the bipartite graph.
 - Optimal only for cycle free tree structure graph codes, but sub-optimal on the graph with cycles
 - The complexity of BP algorithm is proportional to the number of edges in the bipartite graph
 - Due to the sparseness of the parity-check matrix, and thus of the corresponding bipartite graph, the resulting decoding complexity is quite affordable

Structured LDPC Code

/	Information								Γ	Parity			
	P a ¹¹	P a ¹²	P ^{<i>a</i>¹³}	P <i>a</i> ¹⁴		Pa 1(n-m-1)	Pa ^{1(n-m)}	Pai	I	0	0	0	
	P ^{<i>a</i>²<i>i</i>}	P ^{<i>a</i>²²}	P ^{<i>a</i>²³}	P ^{<i>a</i>²⁴}		Pa ^{2(n-m-1)}	P ^{a2(n-m)}	•••	P ^{a2}	I	0	0	
	P ^{<i>a</i>³¹}	P ^{<i>a</i>³²}	P a ³³	P ^{a34}		Pa ^{3(n-m-1)}	P ^{a3(n-m)}	P ^y	0	Pa ³	I	0	
	:	:	:	:		:	:					I	
	Pami	P ^{am2}	P ^{am3}	P ^{am4}		Pa ^{m(n-m-1})	Pa ^{m(n-m)}	P ^x	0	0	0	P ^a "	
		\$		p 1	<i>p</i> 2	7	(0			0)			
		A		в	т	F	$P_{L\times L} = \begin{vmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{vmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	· · · · · · · · · · · · · · · · · · ·	0 : 1	Perı sh peri	mutatic ould be nutatic	on matrix e cyclic on matrix
		С		D	Е		(1	0 0)	0)			

- Full Parallel Implementation [2] High Throughput, High Complexity
- Semi-Parallel Implementation of Structured LDPC code of size mL x nL
 - Edge Parallel Decoder
 - Basic Parallelization Factor: L
 - L/2, L/4, etc are also possible (implementation issue)
 - Node Parallel Decoder
 - Basic Parallelization Factor: (*m*, *n*)
 - 2(*m*, *n*), 4(*m*, *n*), *etc* are also possible (implementation issue)
- Structured LDPC code well suited for both edge parallel and node parallel approach
- Node Parallel Decoder is matched with the proposed scheme for code length flexibility

Multi-Edge-Type LDPC Code

- Multi-Edge-Type (MET) LDPC codes are generalizations of regular and irregular LDPC codes
- Perform better with lower error floor than standard irregular LDPC codes, while requiring lower complexity

- Type of the edges: need a detailed degree distribution
- Degree-one variable nodes: may not sacrifice the threshold
- Punctured variable nodes : increase thresholds and lower error floors

Code Length Flexibility (1/2)

	/			Information			Parity	\frown								
	Pall	Park	Pall	Pe ¹²	Pa ^{l(von-l)}	Pa ^{line} Pa ^l	1 0	0 0								
	Pe21	Par	Pa ²³	Pa ²⁴	Pe ^{20x-m-1}	pe ^{2(n-at)} :	pe ²	0 0				+				
	Pall	P a ^Ω	PaU	Pa [№]	Pa ¹³	Pa ¹⁴	P ^{a¹}	^(n-m-1) P ^{al(n-m)}	Pa ⁷ I	0 0	0					
	-	- :	Pq21	Pa22	Da ²³	Pa ²⁴	Da ²	(n-m-1) pa ^{2(n-m)}	· Da ²		0					
4	Pa ⁿ¹	Pow			Dall	Dal2	Dall	Dal4		$\mathbf{D}_{\alpha}^{1(n-m-1)}$	$\mathbf{D}_{\alpha}^{I(n-m)}$	Dal	Ţ	0	0	0
γ	\ \ \		P ^{a³¹}	P ^{a32}	Put	Par	Pare	Part		Pa ² ,** ** */	Pa:,	Pa	1	U	U	U
	``		÷	:	Ρ ^{α21}	P ^{a22}	P ^{<i>a</i>²³}	P ^{a²⁴}		$P^{a^{2(n-m-1)}}$	$P^{a^{2(n-m)}}$:	Ρ ^{α2}	I	0	0
		\7			<u> </u>											
	L	2 \	P ^{am1}	P ^{<i>a</i>^{<i>m</i>2}}	Da ³¹	Da ³²		Da ³⁴		Da ³ (n-m-1)	$\mathbf{D}a^{3(n-m)}$	Du	0	Da ³	т	0
		-	1		1 P"	P"	P"	P"		P"	P" `	۲ø	U	Γ"	1	U
			\sim													
			Ň	N.	÷	÷	÷	÷		÷	÷					I
					P ^{am1}	P ^{am2}	P ^{am3}	P ^{am4}		P ^{am(n-m-1)}	P ^{am(n-m)}	Px	0		0	P ^{am}

Code length flexibility is obtained by increasing or decreasing the size of cyclic permutation matrix P

- LDPC codes of variable length need to be expressed by only one parity check matrix (called base matrix), thus reducing the memory storage requirements
- The flexibility with respect to code length is achieved by adopting modulo function on the expansion factor of the non-zero sub-matrices in the parity-check matrix
- Assuming that (i, j)th element in base matrix is non-zero. Then shift factor p(f, i, j) corresponding to the expansion factor L_f is derived from the original expansion factor p(i, j) by following:

$$p(f,i,j) = \mathrm{mod}\Big(p(i,j),L_f\Big)$$

LDPC Design for HARQ

- Construct H matrix of lowest code-rate
- Only a part of codeword is transmitted during each HARQ transmission

Encoding Algorithm (1/5)

- Encoding of proposed LDPC code is accomplished by following two steps:
 - 1st part: Richardson & Urbanke's encoding algorithm [3]
 - 2nd part: Single parity-check coding

Encoding Algorithm (2/5)

Richardson & Urbanke's encoding algorithm

$$\begin{cases} As^{T} + Bp_{1}^{T} + Tp_{2}^{T} = 0 & (ET^{-1}A + C)s^{T} + (ET^{-1}B + D)p_{1}^{T} = 0 \\ Cs^{T} + Dp_{1}^{T} + Ep_{2}^{T} = 0 & p_{1}^{T} = \phi^{-1}(ET^{-1}A + C)s^{T}, \ \phi \coloneqq ET^{-1}B + D \end{cases}$$

- Encoding Procedure
 - Step 1) Compute As^{T} and Cs^{T}
 - Step 2) Compute T⁻¹As^T
 - Step 3) Compute $E(T^{-1}As^{T})$ and $E(T^{-1}As^{T}) + Cs^{T}$
 - Step 4) Compute $\phi = ET^{-1}B + D$ and ϕ^{-1}
 - Step 5) Compute $p_1^T = \phi^{-1}(ET^{-1}As^T + Cs^T)$
 - Step 6) Compute p_2^T using $As^T + Bp_1^T + Tp_2^T = 0$ by back-substitution
 - Computational complexity of encoding procedure is $O(N) + O(L^2)$. The second term comes from multiplying by ϕ^{-1} in Step 5)

- The matrix ϕ^{-1} is NOT a sparse matrix
- The multiplication by ϕ^{-1} is a main source to increase the complexity of encoding procedure
- If we can make ϕ an identity matrix, we can skip the multiplication by ϕ^{-1} in the procedure, and can reduce the encoding complexity

Encoding Algorithm (5/5)

• The simple solution to make ϕ an identity matrix [4]:

- B: two non-zero element.
 - Position: 1st and arbitrary.
 - Shift Parameter: A (arbitrary number) and zero
- T: dual diagonal structure (accumulate chain)
 - Shift Parameters: all zero
- D: 1x1
 - Shift Parameter: A (same as 1st non-zero element in B)
- E: one non-zero element.
 - Position: right most.
 - Shift Parameter: zero

FL Packet Formats [1]

Packet Format	Spectral efficiency	Spectral efficiency	Max number of trans-	Modulation order for each transmission							
Index	on 1° trans- mission	on 2 rd trans- mission	missions	1	2	3	4	5	6		
0	0.2		6	2	2	2	2	2	2		
1	0.5		6	2	2	2	2	2	2		
2	1.0		6	2	2	2	2	2	2		
3	1.5		6	3	2	2	2	2	2		
4	2.0		6	4	3	3	3	3	3		
5	2.5		6	6	4	4	4	4	4		
6	3.0		6	6	4	4	4	4	4		
7	4.0		6	6	6	4	4	4	4		
8	5.0		6	6	6	4	4	4	4		
9	6.0	3.0	6	6	6	4	4	4	4		
10	non-decodable	3.5	6	6	6	4	4	4	4		
11	non-decodable	4.0	6	6	6	б	4	4	4		
12	non-decodable	4.5	6	6	6	6	4	4	4		
13	non-decodable	5.0	6	6	6	6	6	4	4		
14	non-decodable	5.5	6	6	6	6	6	4	4		
15	NULL	NULL									

RL Packet Formats [1]

Packet	Spectral efficiency on 1 st	Spectral efficiency on	Max number of	Modulation order for each transmission						
index	transmission	2 nd transmission	transmissio ns	1	2	3	4	5	б	
0	0.25		б	2	2	2	2	2	2	
1	0.50		б	2	2	2	2	2	2	
2	1.0		б	2	2	2	2	2	2	
3	1.5		б	3	2	2	2	2	2	
4	2.0		б	3	3	2	2	2	2	
5	2.67		б	4	4	3	3	3	3	
б	4.0		б	4	4	3	3	3	3	
7	б.0	3.0	б	4	4	4	3	3	3	
8	non-decodable	4.0	б	4	4	4	4	4	3	
9	4.0		б	б	б	4	4	4	4	
10	5.0		б	6	б	4	4	4	4	
11	6.0	3.0	б	б	б	4	4	4	4	
12	non-decodable	3.5	б	б	б	4	4	4	4	
13	non-decodable	4.0	б	б	б	б	4	4	4	
14	non-decodable	4.5	б	б	б	б	4	4	4	

Simulation Assumptions

System Parameters

Number of resource channels	4 (110 data symbols per resource channel)
Modulation	Modulation order step-down
Channel	AWGN
Packet Format (PF) index	FL 2, 4, 8, 14

• LDPC Code Parameters

Code length	440 modulation symbols for 1 st HARQ transmission
Code rate	Defined in PFI
Operation Point	1% FER
Decoding Algorithm	Standard Belief Propagation, floating-point
Scheduling Algorithm	Flooding
Number of Iterations	25, 50, 100

• Turbo Code Parameters

Decoding Algorithm	Log MAP, floating-point
Number of Iterations	12

- Proposed LDPC codes offer both efficient support of Type II HARQ (Incremental Redundancy) together with similar or better performance than Turbo codes through all HARQ retransmissions
- Proposed code structure enables highly parallelizable decoder architectures, thus resulting in high-throughput decoder implementations.

- [1] "Draft Standard for Local and Metropolitan Area Networks Standard Air Interface for Mobile Broadband Wireless Access Systems Supporting Vehicular Mobility - Physical and Media Access Control Layer Specification", IEEE P802.20/D2.1, May 2006.
- [2] A. J. Blanksbyand C. J. Howland, "A 690-mW 1-Gb/s 1024-b, Rate-1/2 Low-Density Parity-Check Code Decoder, IEEE Journal of solidstate circuits, vol. 37, no. 3, March 2002.
- [3] T. J. Richardson and R. Urbanke, "Efficient encoding of low-density parity-check codes," IEEE Transactions on Information Theory, vol. 47, no. 2, pp.638-656, Feb. 2001.
- [4] S. Myung, K. Yang and J. Kim, "Quasi-Cyclic LDPC Codes for Fast Encoding", IEEE Trans. on Info. Theory, Vol.51, N.8, Aug. 2005