A Proposal for Supporting Terminal Mobility at Layer 2

Communications Research Laboratory Mitsubishi Electric Corporation

Background(1)

- The most generic way to support terminal mobility is the Mobile IP based solution. However it ...
 - Has a limitation in fast handover without help of L2 triggers
 - Has its heavy signaling traffic, especially for slow radio links
 - Needs to migrate to IPv6

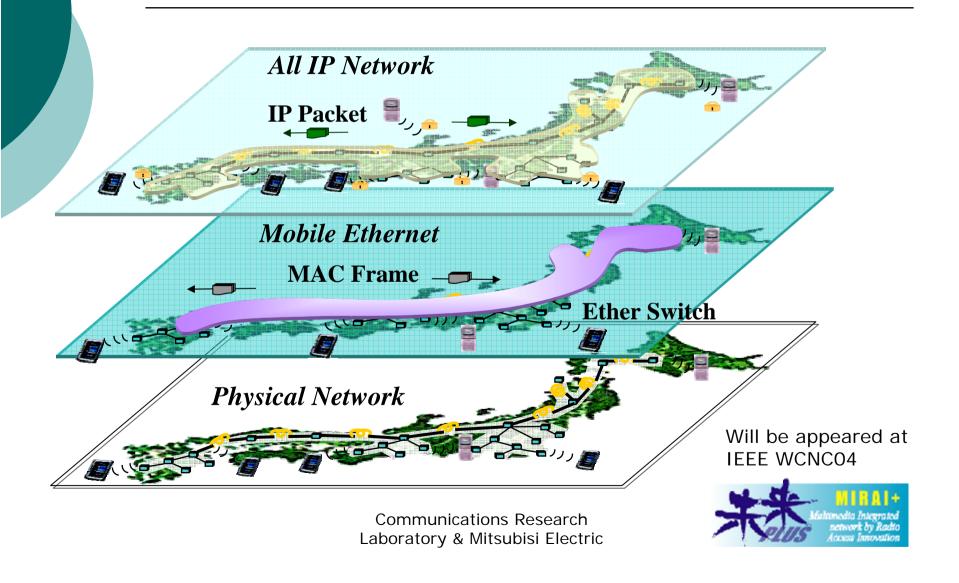
Background(2)

- By bringing short range radio communications into the overlay network
 - Handoffs happen often even in walking speed
 - What is appropriate size of IP subnet?
 - o CellarIP
 - o Hawaii

Background(3)

- Wide deployment of Etherframe network
 - Intranet Ethernet network
 - PPPoE service (ADSL, a power line company communication service in Japan)

A large coverage in geographical area as well



Proposal – Mobile Ethernet

- Accommodates various kinds of radio systems into widely deployed Ethernet based network
 - Almost terminal movements are maintained by Mobile Ethernet without Mobile IP location update
 - Flexible IP layer deployment, IPv4, IPv6, PPP services

Installation of Mobile Ethernet

Mobile Ethernet

- A large geographical coverage by combination of 802 family technologies
 - Transparent handover
 - Network controlled terminal radio interface switch
 - Authentication context transfer (802.1x)
 - Integration with 3G system

Mobile Ethernet Status

- Developing test platform and simulator for scalability evaluation
 - Ether switches with tailored cache learning mechanisms for signaling
 - Multi radio terminal
 - Scalable Mobile Ethernet simulator based on Java SSF api

