EEE across CAUI

Hugh Barrass IEEE P802.3bj (for) July, 2012

Presentation_ID IEEE 802.3bj – July, 2012, San Diego, Ca

Contributors, reviewers and supporters

Your name here

Agenda

- Tx_mode signaling
- Rx_mode signaling
- Questions...

Signaling tx_mode across CAUI

 A mechanism must be defined to signal the tx_mode parameter across the CAUI from the PCS to the PMA/PMD

Signaling tx_mode across CAUI

- Use specific codes within the Rapid Alignment Markers
 - CD fields currently used for countdown
 - Used to synchronize the start of normal alignment markers
- Variable count_down is defined & scrambled to produce CD field
- According to tx_mode state, set different values for count_down

PCS – alignment marker insertion

- Clause 82.2.7
- Define RAM as shown before count_down definition:

tx_mode	Down_count
DATA	(normal AM operation)
SLEEP	count_down = 135
QUIET	count_down = 154
RF_ALERT	count_down = 173
ALERT	count_down = 183
FW	count_down = 192
RF_WAKE	count_down = dc_start *
WAKE	count_down = dc_start *

When tx_mode transitions to WAKE, count_down is set to dc_start; count_down then decrements until it reaches zero, after which normal AMs are sent starting 16383 blocks after the terminal RAM

dc_start = 38 (std); 3 (FW)

CD/!CD field in RAM communicates tx_mode to other sublayers across CAUI NB: PMA/PMD does not transmit RAMs to LP during QUIET/ALERT/FW states

Pros & Cons

- No change to datapath structure
 - Simple to implement in PCS
 - Signaling carries across to LP for most states
- Only 1 PCS lane sufficient to decode
- Layer violation requires detached PMA to decode 66 blocks
- Problem for 2 x CAUI implementation
 - If 1st CAUI shut down, PMA must insert for 2nd CAUI

PMA/PMD – transmit functions

- Remember!
- An integrated PMA can use tx_mode parameters directly
- Based on tx_mode PMA/PMD transmission changes
 - DATA/SLEEP/WAKE normal behavior;
 - ALERT send alert signal;
 - FW send PMA-specific pattern (TBD);
 - QUIET disable Tx
- New proposal just send LPI & RAM in FW state
 - (i.e. normal behavior in all states except QUIET & ALERT)

What to specify

- PMA/PMD behavior defined according to tx_mode
- Use a note to describe how tx_mode may be inferred if no direct connection is available

 Note: A PMA/PMD that is separated from the PCS by a CAUI may infer the state of tx_mode by decoding one or more PCS lanes and observing the RAMs present in the data stream.

Agenda

- From Baseline ...
- Tx_mode signaling
- Rx_mode signaling etc.
- Questions...

Signaling rx_mode across CAUI

 A mechanism must be defined to signal the rx_mode parameter (or the state of the received signal) across the CAUI from the PMA/PMD to the PCS

Signaling rx_mode across CAUI

- Incoming RAMs are left intact (when received)
 - All states other than QUIET, ALERT, RF_ALERT, & FW
 - Needs 3 new signals (QUIET, ALERT/RF_ALERT, FW)
 - With FW proposal, only 2 new signals QUIET/ALERT
- Use fixed pattern, easy to detect & distinguish
- QUIET & FW states are persistent => needs "safe" pattern; ALERT is transitory

Solution, Pros & Cons

- ALERT use the same PMA structure as Tx alert
 - (if identical for different PMDs)
- QUIET & FW, use PRBS test mode same for both
 - PCS must understand which one was expected
 - No confusion if FW proposal accepted
- + No extra h/w in PMA re-uses alert & test mode logic
- Needs careful thought regarding latency/delays

PMA/PMD – receive functions

- Infer rx_mode from incoming signal:
 - Receiving normal AMs, or RAMs = DATA/SLEEP/WAKE
 - Receiving no signal = QUIET; alert signal = ALERT; specific signaling = FW

- An integrated PMA can signal receive state to PCS directly
- Otherwise, code for signaling across CAUI PRBS & ALERT

What to specify

- PMA/PMD needs to understand the difference between QUIET (no signal); ALERT (new signal); and normal data stream.
 - Fundamentally difficult problem needs some control of expectations.
 - (expectations set by PCS state machine in .3az), problem for detached PMA/PMD.

Specify CAUI signaling for DATA/FW (=incoming RAMs);
QUIET = PRBS; ALERT = ALERT.

What to specify (ii)

- Specify rx_mode inference in general terms based on incoming signal.
 - Will that be acceptable?.
- Use note to suggest inference mechanism (as for Tx).
 - Including "statefulness"
 - Also questionable for a standard.
- This part needs more thought!

Agenda

- From Baseline ...
- Tx_mode signaling
- Rx_mode signaling
- Questions...