100GBASE-KP4 Transmitter Characteristics Ad Hoc

24 Oct, 2012

IEEE 802.3bj 100GBASE-KP4 TX Ad Hoc

- This call is an IEEE appointed ad hoc.
- The meeting rules apply regarding IP, cost, confidential clauses, etc.

Attendance

- If you are on the call, please send me an email
- * 6 to mute and unmute

Agenda

- IEEE patent policy reminder <u>http://www.ieee802.org/3/patent.html</u>
- Open Action Items
- Rise time vs linear fit (Charles Moore)
- 100GBASE-KP4 training frame updates for full state pinning (Adee Ran)
- Discuss next steps

Open Action Items in Ad Hoc

- First analysis of transition times from linear fit (Charles Moore)
- Training to data mode initialization with termination bits (Adee/Kent)
- Training pattern seed structure changed based on partial state to full state pinning (Adee/Kent)
- Example training frame sequence (Adee/Kent)
- Pk-pk limit approach is different from Clause 93. (TBD)
- Investigate linear fit pattern (Adee/Kent) in 2 weeks
- Coef ratios for INITIALIZE (Kent Lusted) in 2 weeks
- Report out discussion on overhead bits (Zhongfang Wang and Matt Brown)

Linear Fit Update – Charles Moore

See risetime_vs_fit_pulse.pdf

Training Pattern Update

• See pages 8-15

IEEE 802.3bj 100GBASE-KP4 TX Ad Hoc

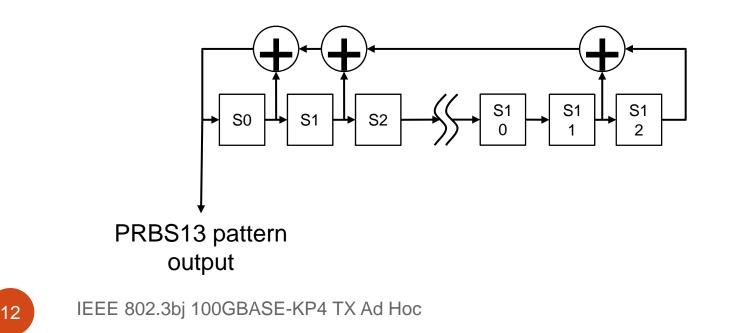
100GBASE-KP4 Training Frame Update Goals

- Use full-state pinning termination in Draft 1.2
 - 1 PAM4 symbol (termination) with bits taken from known PRBS sequence
 - 45 PAM4 symbols precoded
- Enable locking on termination PRBS during training
 - Essential for data decoding
- Make training frame same size as PMA frame
 - Simplifies implementation
 - Use PAO for EEE ALERT frame only
- Maintain spectrally rich, DC balanced and uncorrelated lane sequences

100GBASE-KP4 Precoding changes from D1.2

- Training frame word (TFW) is still 46 UI
 - Now TFW is same size as D1.2 termination block
 - In D1.1, 1 TFW = 2 TB46
- TFW is now created from 92 bits of PRBS13 at a time (instead of 45 bits at a time in D1.1)
 - Gray coding results in 46 bit-pairs
 - First pair is used for initializing the precoder state
 As per 94.2.2.6
 - The remaining 45 pairs fed through the precoder
 - As per 94.2.2.6

Frame size changes from D1.2


- Propose to increase training pattern length to 338 TFWs
 - Requires 338*92=31096 bits from PRBS13
 - PRBS13 full cycle is 8191 bits
 - Use 3 full cycles + 4th cycle truncated to 6523 bits
 - Bits from 2nd and 4th cycles are inverted
- Added to marker and control channel (10 TFW together), the new training frame is 348 TFWs, which is equal to the PMA frame size

Transition from training to data

- Training frame is always aligned with the PMA frame; last training frame is immediately followed by 40-bit overhead of data
 - No need for PAO field in training (only in EEE alert)
 - Countdown field still used to signal transition
 - 40-bit overhead should start with a termination symbol to be consistent; otherwise data should start with the termination symbol preceding the 40-bit overhead
- PRBS13 is re-seeded at the beginning of each training sequence during training mode, but keeps running freely in data mode
 - Termination bits get synced during training
 - PRBS always advances 92 bits per TFW in training and by 92 bits per term block in data mode

PRBS generator change

- Modified Fibonacci polynomial: G(x)=1+x+x²+x¹²+x¹³
 - Old one was G(x)=1+x+x²+x¹¹+x¹³
 - Required to enable creating 4 DC balanced, quasiwhite, non-correlated sequences

Initial outputs

- The *initial outputs* of the PRBS13 generator, right after the control channel transmission, shall be different for each of the PMD lanes, as follows (LSB transmitted first)
 - PMD lane 0: 0x<u>C</u>D92
 - PMD lane 1: 0x2AFB
 - PMD lane 2: 0x<u>C</u>3D3
 - PMD lane 3: 0x<u>E</u>2F6
- Generator is re-seeded to same values at the beginning of every training frame pattern

Initial sequences

k25

Lane	Output of	Contents of first 2 TFWs (from left to right)
LO	PRBS	010010011011001111000101010100001001001
	Gray code	103132022011113010312123121001210212102
	Precoder	1301200200101031003201123322233220110021032320 0111101103333223211121021130331123112233001211
L1	PRBS	1101111101010100000010010011011001111000101
	Gray code	2122111000310213123033320031023220233002331323 3120203323022233232122330321221022131113120312
	Precoder	2333232222100230112212113123112022030002123021 3200221203111121120111213023332202301012331233
L2	PRBS	11001011110000111110111011101100110011
	Gray code	20322002232323202020230230200202323002020023 0213013033201310233330203100231232333202031111
	Precoder	2211131112033022002203112200022203300022000021 023001221200123112123312313301120303311301010
L3	PRBS	011011110100011110111110101100110111111
	Gray code	1322101232233202122302213323220301130320332230 3113322033113031220033211310222011132331011220
	Precoder	1202310211121133202133321203331223213022120213 3230333121012210200030232100202232302123101113
IEEE 802.3bj 100GBASE-KP4 TX Ad Hoc		

Slide 14

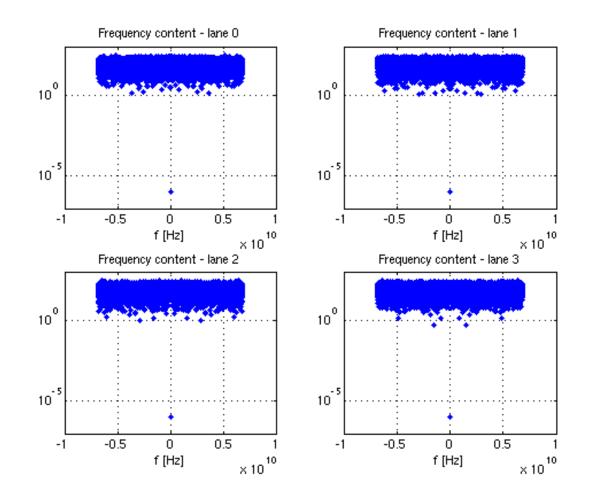
k25 underline first symbol to indicate precoder init per 94.2.2.6?

put arrows denoting order

note first and 2nd TFW kclusted, 10/24/2012

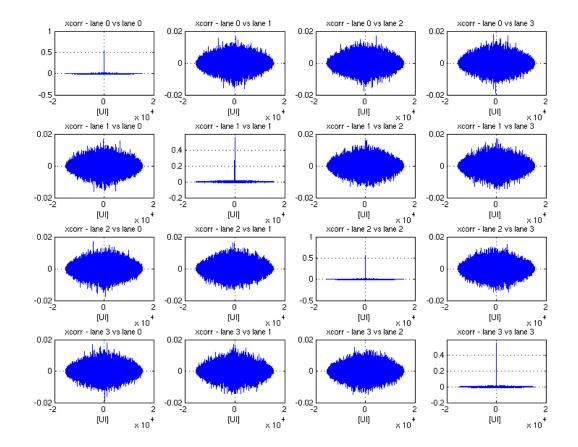
Training pattern features

- The resulting sequences are DC balanced, quasiwhite and have low correlation between lanes
- Distribution of voltage levels is nearly uniform
- Distribution of transitions between level is nearly uniform

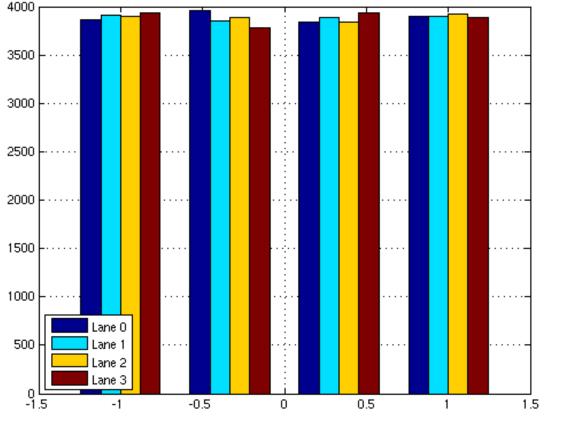

Discussion

IEEE 802.3bj 100GBASE-KP4 TX Ad Hoc

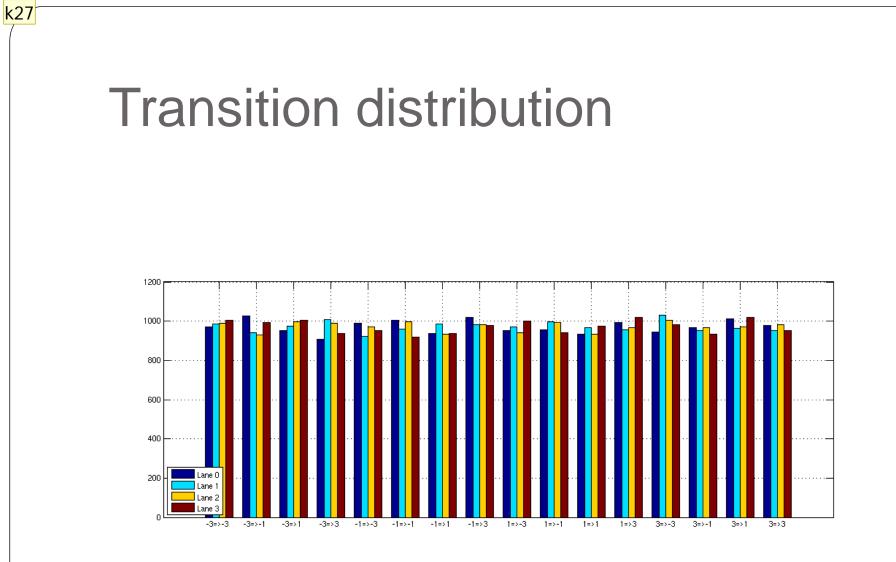
BACKUP



Patterns are quasi-white and DC balanced


IEEE 802.3bj 100GBASE-KP4 TX Ad Hoc

Low correlation between lanes


IEEE 802.3bj 100GBASE-KP4 TX Ad Hoc

Level distribution

PRBS pattern portion only

Slide 21

k27	of pattern only
	kclusted, 10/22/2012