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Signaling Schemes Considered

€ Signaling contributions to CEI-25 compared the
following signal coding schemes:

€ NRZ with FFE/DFE Equalization
€ PR2 (Duobinary) with FFE/DFE Equalization

€ PR3 with FFE/DFE Equalization

€ PR3 is a special case of PAM-4 where only
transitions between adjacent levels are allowed.
(Better specirum and crosstalk than PAM-4.)



Analysis Approach

+ Analysis for each case:

- Signal waveform and PSD at output of precoder
. Signal waveform and PSD at output of FIR
. Signal eye and PSD at input of DFE

. Signal eye at output of DFE
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€ Early signaling contributions to OIF compared eye opening
for equalized NRZ, duobinary, and PAM-4 signaling.

€ ALU1 channel is lower insertion loss but has crosstalk which
is significant at frequencies of interest.

€ NRZ performed equivalent to duobinary on this channel.
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Signaling Comparisons (Molex1)
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€ Channels with higher insertion loss (such as the Molex1
channel) had a closed eye at 25 Gb/s.

€ In general, equalized NRZ performed equivalent or better
than other signaling schemes.

€ IBM subsequently contributed analysis which explained
these results.




Signal Amplitude Vpd

NRZ @ 20Gbps
(Forcel0, 277)
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Signal Amplitude Vpd

PR3 @ 20Gbps
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NRZ vs. PR2 PSD Comparison

PSD for PR2 only marginally changes envelope from that of NRZ,

30 _— 100
sssss 5 NRZ
SSSSS o 10 80 _
7! "% 70% power below 10 GHz
g A »% 80% power below 12 GHz
& R T E
Ll < 90% power below 15 GHz
,,,,,, . K
e e zees ’ -60 / ‘ 10
-700 5 10 15 FZO 25 [Gl—?(} 35 40 45 58
requency 4
30 = 100
EEEEE 20 N0
..... o 5 10 80
,,,,, L S, .2 0% power below 7 GHz
ggggg o £
‘‘‘‘‘ s 80% power below 13 GHz
VAN | "t 90% power below 16 GHz
VVVVVV 8—50 / J 20 :
B e '50/ \ 10
_700 5 10 15 20 25 30 35 40 45 58

Frequency [GHz]



PSD Comparison Conclusions

€ Observations:
& FIR output is multilevel in all cases.

€ PSDs do not show significant differences except in
position of notches.

€ Eye height at DFE output is largest for equalized NRZ. Eye
height is reduced for PRx.

& Postulations:

€ Note that PR2/PR3 can be generated by existing FFE
architectures....

@ Therefore, PR2 and PR3 are special cases within the
potential solution space of a link using equalized NRZ
signaling.

& Therefore, PR2 and PR3 are cases which are considered
by FFE/DFE optimization algorithms.

& Therefore equalized NRZ results should be equivalent or
better than PR2/PR3 special cases.




Literature

@ The spectrum of NRZ vs. duobinary is analyzed in:
A. Sekey, “An Analysis of the Duobinary
Technique,” IEEE Trans. Comm. Technology, vol.
COM-14, no. 2, 1966, pp. 126-130.

W, (f) =W, (f)cos® 7Tf

L Power spectrum of NRZ

€ If NRZ has frequency components above f=1/2T,
PR2 will also have finite components there, except
at discrete points where cos(pi*T*f)=0. Thus the
bandwidth as defined in the Sampling Theorem is
not compressed at all.



Literature

€ In the special case of the rectangular pulse, the spectrum is
compressed by 2-to-1 along the frequency axis. This means
that certain parameters of the spectrum, which are
sometimes used to define “bandwidth” in a loose sense, are

also halved. These are, e.g:
& the frequency at which the spectrum first falls to zero,

& the frequency below which lies a specified proportion
(e.g., 90%) of the spectral energy, etc.
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Literature Conclusions

€ The literature suggests that the spectral energy
does get pushed to lower frequencies to some
extent by PR2 and PR3 signaling.

® This leads to the expectation that multilevel
signaling has an advantage for some channels,
particularly channels with high crosstalk.

& But if PR2/PR3 are part of the solution space
searched for equalized NRZ, then equalized NRZ
will achieve equalivalent results to duobinary.



NRZ for a Duobinary “Friendly” Channel

€ Analysis used:
& Force 10 channel parameters for a 27” channel.
€ Substantial crosstalk component added.

€ Postulation: In the presence of excessive crosstalk,
the FFE optimization algorithm should naturally
pick a PRx (x = number of FFE taps available).



Xtalk ~ 0 dB (f > 10GHz)
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2-tap FFE Optimization

€4 Channel has a significant

crosstalk component.

€ Optimized FFE tap coefficients:
[0.5062,0.4938].

€ Equalized NRZ signaling is
equivalent to duobinary.
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xalk-ode i>6ochy  S-TAP FFE Optimization
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€ Optimized FFE tap coefficients:
[0.3509,0.4574,0.1917].
e € Equalized NRZ signaling is
equivalent to PR3.
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Signaling Conclusions

€ Multi-level signaling will not produce better results
because it is already part of the potential solution
space for equalized NRL.

@ OIF selection of equalized NRZ signaling for CEI-25
was partially based on this conclusion. Additionally:

€ No contributions were received which demonstrated
advantage to any other signaling scheme over a
range of channels.

& Contributions which were received demonstrated that
equalized NRZ performed equivalent or better than
alternatives.



Sensitivity Analysis for Equalized NRZ

Given equalized NRZ

[Signaling|[NRZ|FFE[4-tap T-spaced|BER[1E-15|

signaling:
€ Rxrequires approx.

30mYV of eye height
at the sampling latch.

€ Simulations show this g
is equivalent to an
insertion loss at
Nyquist of approx. -
25d8B.

4 Channels must meet 2
this performance in
order to have a
feasible solution for
the CEI-25 |IA.
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CEI-25 Long Reach Channel Requirements

€ Channel insertion loss is
specified consistent with
sensitivity analysis:
€ Sdd21 insertion loss of
-25 dB at 12.5 GHz.

& Specify both max. and

min. SAdd21 limits.

& Specify limits for Sdd21

deviation & crosstalk.
4 Backplane applications

typically require up to 30 of
trace with up to 2 connectors.

€ Feasability requires signaling

simulations using S-

Parameters for backplane
channel designs meeting the

channel specification.
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Compliant Channel Example

Sdd21[dB]

Channel description:
€ 22" Channel Backplane
€ 8 Crosstalk Aggressors
€ Production Capable

€ Measured S-Parameters

€ Sdd21 is compliant with
CEI-25G-LR.
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Breakdown of Channel Loss

—>| Tx Filter ——> Channel ——> Rx Pkg —>

ml .
ml m2 freq=12.50GHz | TX filter

\\\'i dB(S(1,2))=-2.912

m2

freq=12.50GHz | RX package
dB(S(3,4))=-3.262

m3
freq=12.50GHz PCB
dB(S(5,6))=-17.522
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Overall channel loss =29+ 175+ 3.3=23.7dB @ 12.5 GHz



Simulation Conditions

v PRBS15

v  BER=1E-12 and 1E-15

v Tx level=800mVpd

v Tx DCD=3.5%UIpp duty cycle

v Tx RJ=1.07%UI RMS

v Tx edge rate filter=60 dB/dec LPF with corner frequency at 12.5 GHz
v Rx RJ=1.07%Ul RMS

v Rx SJ=10%Ulpp, 1E-2 cycles/Ul freq

v Gaussian amplitude noise=1.46mV RMS

v' Latch sensitivity=0mV

v' Rx term=500hm

v Rx PKG=IBM (55mm_T33mm1150hm_lowBGAcoupling)
v # of bits simulated=3M

v AGC level target=300mV

v 3-tap (1 pre- & 1 post-cursor) baud-spaced FFE

v’ 8 crosstalk aggressors




Signal Processing Flows Considered

Traditional:
. Tx 3-tap Channel RXx 4-tap .
FFE DFE
Advanced:
Tx 3-tap Rx CTE
—> —> Channel —> >
FFE + 4-tap DFE

+ CTE = Continuous Time Equalizer

+ Criteria for an “open” eye
. HEYE > 0.15 Ul
. VEYE > 30 mV




Freguency Response of Rx CTE
(6dB peak, 15t order)
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Signaling Simulations

€ Simulation shows open
eye for a CEI-25G-LR
compliant channel.

& Addition of CTE key
to achieving open
eye at BER=1E-12.

€ Robust solution may
require more DFE

taps.
€ Simulations show some DFE TxFFE=4taps  @1E-12 BER
will be required for SR Rx CTE = yes HEYE= 21.4% Ul
applications. Rx DFE =4taps VEYE=30.3mV



Conclusions

€ OIF decision to base CEI-25 (both SR and LR) on equalized
NRZ signaling was based on signaling simulations
contributed throughout 2005-2008.

€ CEI-25G-LR Channel Model is based on feasibility limits as
determined by sensitivity analysis for equalized NRZ
signaling.

€4 Backplane channel design has been demonstrated which
meets the requirements of the CEI-25G-LR Channel Model.

€ Achievable due to evolution of channel design
techniques, board materials, and connectors.

€ Signaling simulations demonstrate that reasonable receiver
designs can be used to receive signals over CEI-25G-LR
compliant channels.

€ Achievable due to evolution of Serdes design to include
both CTE and DFE in the Receiver.




