

25Gb/s Signaling for 100G Backplanes: Channel Loss vs. Equalization

John Ewen, Mounir Meghelli and Troy Beukema March 2011

IBM

Introduction

Backplane reach objective influenced by technical and economic feasibility

> MMSE-DFE SNR analysis

- Slightly more complex than Salz SNR
- Still highly ideal analysis

Compare SNR across different types of hypothetical channels

- O 10GBASE-KR
- CEI 25G-LR

25Gb/s on "KR-like" Channels

> Use Annex 69B recommendations

- Extrapolate ICRmin without change
- Extrapolate PSXT assuming no breakpoint in insertion loss curve

SNR calculations

- Salz SNR with crosstalk only
- Salz SNR with additional white noise
 - Assume –147 dBm/Hz AWGN (10 nV/√Hz)
- SNR of ideal, finite-complexity, MMSE-DFE
 - 3 T-spaced forward taps + 20 feedback taps (3T1-20)
 - 5 T-spaced forward taps + 10 feedback taps (5T1-10)
- No FEC coding gain included in margin calculations

> 25Gb/s transmission on KR channels does not seem technically feasible for either 2 or 4 level PAM encoding.

Margin @ 10 ⁻¹²	SNR		SNR Margin		SNR Margin	
	KR Channel		KR Channel		Extrapolated KR	
SNR margin	2-PAM	4-PAM	2-PAM	4-PAM	2-PAM	4-PAM
Salz SNR with xtalk only	15.8	29.2	-1.1	5.3	7.2	5.6
Salz SNR (xtalk + AWGN)	14.2	26.8	-2.7	2.8	-0.6	2.5
5T1-10 SNR (xtalk + AWGN)	10.3	22.6	-6.6	-1.4	-3.9	-0.1
3T1-20 SNR (xtalk + AWGN)	7.6	20.1	-9.3	-3.9	-6.6	-3.3

Frequency (GHz)

Channel Loss (dB)	6.45 GHz	12.9 GHz
KR Channel (solid)	35.3	127
Extrapolated KR (dashed)	31.0	59.3

- Data rate: 25.781 Gb/s
- TX risetime: 0.25 UI 20% 80% 2nd-order Butterworth filter
- RX filter: 4th-order Butterworth at 0.75x symbol rate
- Av = 1Vppd, Aa = 1Vppd
- No CTLE
- No package
- No reflections

25Gb/s on "CEI LR-like" Channels

- > Use Annex 69B ICRmin recommendation
 - Same ICR used for all masks

IL Masks

- CEI-25G-LR from oif2008.161.11
- Mask A & Mask B simple extrapolations based on loss at 12.9 GHz

> Observations

- Appears to be a breakpoint above ~30dB independent of signaling
- To achieve equivalent margin to 10GBASE-KR, 25Gb/s will require some trade-off between
 - Lower loss
 - Lower crosstalk
 - FEC
 - EQ complexity

Channel Loss (dB)	6.45 GHz	12.9 GHz
CEI-25G-LR	15.8	25.5
Mask A	18.3	30.0
Mask B	21.1	35.0

SND Margin @ 10-12 (dD)	CEI 25G-LR		Mask A		Mask B		10Gb/s KR
	2-PAM	4-PAM	2-PAM	4-PAM	2-PAM	4-PAM	NRZ
Salz SNR crosstalk only	7.8	6.4	7.8	6.4	7.8	6.4	15.3
Salz SNR with -147dBm/Hz white noise	6.6	5.4	6.1	5.3	5.3	5.0	13.5
5T1-10 DFE SNR with white noise	4.1	3.0	3.5	2.8	2.6	2.5	7.0 *
3T1-20 DFE SNR with white noise	4.6	4.4	3.0	4.4	1.3	3.2	

* 3-tap FFE + 5-tap DFE

Summary

Backplane reach objective requires consideration of:

- Improved FR-4 (loss, crosstalk, reflections, ...)
- Equalization complexity (area, power, ...)
- FEC (block, trellis, ...)
- Other?

Propose 25dB – 30dB loss @ 12.9GHz as starting point:

- Crosstalk similar or better than 10GBASE-KR
- Launch amplitudes ~ 1Vppd
- MMSE-DFE
- Some form of FEC for additional margin

Backup

802.3 100G Cu SG - March 2011

Simulation Model

- [1] J. Salz, "Optimum mean-square decision feedback equalization," Bell Syst. Tech. J., vol. 52, no. 8, p. 1342, Oct. 1973.
- [2] J. M. Cioffi, G. P. Dudevoir, M. V. Eyuboglu, and G. D. Forney, Jr., "MMSE decision-feedback equalization and coding Part 1: Equalization results," IEEE Trans. Commun., 1995.
- [3] N. Al-Dhahir and J.M. Cioffi, "MMSE Decision-Feedback Equalizers: Finite-Length Results," IEEE Trans. Information Theory, vol. 41, no. 4, 1995.

$$MDNEXT(f) = -10\log_{10}\left(\sum_{k} 10^{-NEXT_{k}(f)/10}\right)$$
$$MDFEXT(f) = -10\log_{10}\left(\sum_{k} 10^{-FEXT_{k}(f)/10}\right)$$

 \geq

 \geq