

Circuit Board Technology: An Introduction to Fabrication Issues in High Speed Channels

Joel Goergen – Distinguished Engineer

This presentation covers an overview of the issues and concerns in fabrication technology from a holistic, system level, point of view. The intent is to provide an understanding to technical and economic feasibility.

A Grateful Thanks To:

- Steve Billiet TTM
- Chudy Nwachukwu Isola
- David Senk Cisco
- Dale Beitelspacher Cisco

25Gbps ... Economic and Technical Feasibility ... Where Do I Start?

- Standards
- System Components
- Channel Components
- Modules and Interfaces
- Interface Feasibility
- Simulation Methods
- SERDES
- Connectors
- Coding and Signaling

Any Place to Start ... Standards: A Quick Look From MY VIEW

 There is not an industry accepted standard today covering 25Gbps signaling

Chip to Chip

Chip to Back Plane / Mid Plane

Chip to Module ?? There seems to be agreement here

 OIF, IEEE802, and Fiber Channel are all pursuing next generation signaling speeds, with OIF seeding the efforts since 2005.

Standards: What Will Be Difficult in 25Gbps

Power Noise

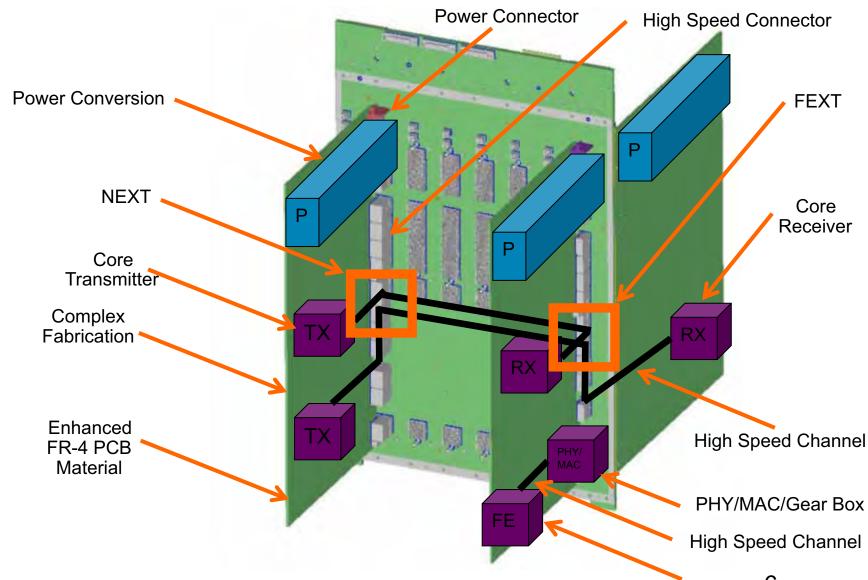
Won't really be discussed, but always a problem.

Cross Talk

Always discussed and always blamed on the connector. Reduction efforts often result in little over-all gain compared to the whole.

PCB Material and Fabrication Technology

Everyone wants the material to cost 1X FR-4


The complexity impacts cost

Assembly is a problem, but rarely discussed.

SERDES Core

Whatever the coding and signaling, the power has to be low and the latency has to be low.

System Level Overview Breaking Down the Components

IEEE802.3 100Gb/s Ethernet Electrical Backplane and Twinaxial Copper Cable Assemblies Study Group Front En Module

Material and Fabrication

FR-4 Type PCB Materials Overview and Relative Costs

Supplier	Material	Glass Transition °C	Dielectric Constant	Dissipation Factor	* Cost versus FR4	PRO's	CON's	Approx Lead		
	Transition C	Constant	Pactor	PHA			STD	QTA		
				Tier 1 - Sta	ndard Perforn	nance				
Isola	370HR				Baseline	LF capable	None	5 days	3 days	
Isola	FR406				Baselne	Cost effective	Not LF	5 days	3 days	
Isola	IS410				1.0 - 1.25	-	Not LF	5 days	3 days	
Isola	IS415	170 - 180	3.7 - 4.7	.0135026	1.25 - 1.5	Superior electrical	Not LF	5 - 8 days	No QTA	
Nelco	N4000-6				Baseline	Cost effective	Not LF	6 days	3 days	
Nelco	N4000-29				Baselne	LF capable	Marginal CAF-R	6 days	3 days	
Panasonic	R-1755V				1.25 - 1.5	LF capable, CAF-R	Cost	2 – 4 weeks	none	
				Tier	2 - Low Loss					
Isola	FR408				1.5 - 2.0	Low loss / good value	Not LF, high Z axis exp	5 days	3 days	
Isola	FR408HR				2.5 - 2.75	Low loss / CAF-R	New, LF TBD	5 - 8 days	3 days	
Isola	GETEK			-4.4 .0080125	1.75 - 2.25	Low loss / good value	Not LF, high Z axis exp	7 - 10 days	none	
Nelco	N4000-12	180 - 210	3.6 - 4.4		1.5 - 2.0	Low loss / good value	Not LF, high Z axis exp	7 - 10 days	none	
Nelco	N4000+13				2.0 - 2.5	Widely accepted	Not LF & CAF	7 - 10 days	3 days	
Nelco	N4000-13EP					2.0 - 2.5	Improved LF capability	Concerns with CAF	5 days	4 days
Panasonic	R-2125				2.5 - 3.0	Excellent thermal / CAF	High Dk	2 – 4 weeks	none	
				Tier 3 -	Ultra Low Los	ss				
Isola	IS620 LF				2.75 - 3.0	Low Dk / low loss	Not LF	7 - 10 days	none	
Nelco	N4000-13EP SI	210 - 220	3.2 - 3.8	.002008	3.0 - 3.25	Low Dk / low loss	Concerns with CAF-R	7 - 10 days	none	
Panasonic	Megtron 6				5.0 - 5.25	Superior thermal / CAF	Cost, Copper Filling	2 - 4 weeks	none	
			RF	Microwave M	aterials - Non	Teflon Base				
Rogers	4350 / 4450	> 280	3.38	0.004	5.0	Normal processing	Low peel strength	7 – 14 days	none	
			F	RF Microwave	Materials - Te	flon Base				
Arion	Numerous							10 days	none	
Nelco	N9000			010000000000000000000000000000000000000		Superior signal integrity at		7 – 10 days	none	
Rogers	3000, 6000	N/A	2.2 - 10	As low as .0009	5.0 - 60.0	high speeds	Cost / Processing	2 – 4 weeks	none	
Taconic	Numerous							2 - 4 weeks	none	

IEEE802.3 100Gb/s Ethernet Electrical Backplane and Twinaxial Copper Cable Assemblies Study Group

FR-4 Type PCB Materials Overview and Relative Costs

Coulties the se a rough puck only. The straight phone are bases from incoming supplies of the straight of the

Materials advertised to be lead-free capable

Supplier Material ID	Isate IS410	leola -370HER	ITEQ IT-100	Nan Ya NP-170TL	Nelco N4000-29	Parasonic R-1755	Parasonic R-1759V
Dk @ 1 Mhr			4.60	4.30	4.80	4.08	4.70
Dk @ 1 Glu	San Carrie	III CONTRACTOR	-	3.90	4.30	4.31	4,40
Dh @ Z Ghr	3.76	4.04		-	-	4.27	4.30
Dk @ 5 Ghz	3.09	3.82	_			4.22	4.30
Dk @ 10 Ghz	3.00	3.92			4.10	4.16	4.20
Df db 1 Mhs			0.0190	0.0175	0.0160	0.0153	0.0136
Df @ 1 Gha	Name of the last			0.0140		0.0153	0.0160
Df @ 2 Ghz	0.0210	0.0210	-	100000	0.0150	0.0170	0.0170
DF @ 5 Cha	0.0290	0.0250	-			0.0190	0.0186
Of 4th 10 GPw	0.0290	0.0250			0.0170	0.0220	0.0210

Supplier Material ID	TUC TU-722-7	Vertec VT-47
Dk @ 1 Mhz	4.70	4.40
Dk (E 1 Ghr	4.40	4.30
Dk @ 2 Gha		4.15
Ok (8 5 Ghz		100
Dk @ 10 Ghz		
DF @ 1 MFu	0.0230	0.0175
Df @ 1 Ghz	0.0140	0.0165
Df @ 2 Ghz		0.0160
Df @ 5 Ghz	-	0.0106
DE CO. SEC STORY		

1X FR-4

Dicy curs	d leutectics		
Inote FRAGE	Nelco Nelco	4	PRINCES -01%
	4.30		Small of
	4.10		distance of
3.79	4.00		Patricial Tree
3.76			aire not breat-
3.76			Tree countries
	0.0230		
0.0180	0.0220		
0.0186			
0.0186			

- Tier 2, low loss electrical performance (0.006 0.015 Df)
 - Materials advertised to be lead-free capable

		Polymore	In order	1000			Halogen h	10		
Supplier Material ID	Arten 25%	Arten EP-2	per / -a	EMC EM-210	Non Ye NP-G-17071	Nan Ya MFGN-170	NATION TEF	Panesoniu 8-1877	Rogers *	TUA
Dk (2 1 Mhs	4.20	4.20			4.40	4.40	4.10			-
Dk @ 1 Gha		New I present	3.80	4.60	#.00	8.00	4.00	4.10	3.96	
DK (S Z GN)		4.10	5.50	-				-		
Dk @ 5 Ghs		4.15	The same of							
DA GD 10 GRM		4.13	3.50				3.80	-	4.01	
Of all 1 Mins	0.01	0.006	1	-	0.015	0.015	0.0130			0.0
Dt @ 1 Gha	-	1000	I down to the	0.0100	0.013	0.013	-	D 6100	0.0080	0.0
DY @ 2 Ghu		0.0079	0.016	-	-	100000		-	-	100
Of (2 5 Ghu	8	0.0081	State of the last				- warrier 1			
Of @ 6 Ghu Of @ 10 Ghu		0.0083	0.0090			-	0.0160		0.0118	

Note: Materials shown for comparison purposes. Some materials may not be available at Chippewa Falls.

2-3X FR-4

Caution the er a rough public one. The prints promit are fatest from terrening supplies data should financial says due to easi method and sample constitution differences.

Tier 2, low loss electrical performance (0.006 – 0.015 Df)

- Materials advertised to be lead-free capable

Supplier Material ID	1941S	FR408	FR405HR	180(a 15625)	Nelco N4000-12	Nelco N4000-13	Nelco 84000-136P	Nelco 136PM	Panaseric Megtron+	Panasonic R-2125
DK @ 1 MNs		1	-		3.00	3.68			3.90	4.60
Dk @ 1 Ghz	-			100	3.70	3.70	3.70	3.40	3.80	4.40
Dk @ 2 Ghz	3.70	3.65	1.75	3.60	3.70	3.70	3.70	3.20		4.30
Dk @ 5 Ghz	3.68	3.63	3.73	3.57	3.60	3.60		2.2		4.30
Dk @ 10 Ghz	3.68	3.63	3.72	3.57	3.65	3.66	3.65	3.25		4.20
Df @ 1 Mhz					0.0100	0.0090			0.0086	0.0060
Dr.@ 1 Ghz	Marian Co.	and the last		1000		0.0100	100000		0.0090	0.0100
Of @ 2 Ghz	0.0130	.0.0120	0.0084	0.0060	0.0080	0.0000	0.0090	0.0080		0.0120
Of @ 5 Ghz	0.0133	0.0130	0.0097	0.0066	Inches Contract		10000			0.0135
Dr @ 10 Gha	0.0133	0.0130	8.8160	0.0071	0.0080	5 00AB	0.0085	0.0075		0.0150

Supplier Material ID	Panzanio Megtron 4	TUC TU-PER(752)	TUC TU-872	TUC TU-872LA
Dk (p 1 Mhz		4.60	4.10	New/protect
Dk @ 1 Ghz	3.80	4.30	4:00	4.00
Dk @ Z Gha	3.80			3.90
Dk @ 6 Ghs	2.76			
DK @ 10 Ghz	3.72	Name and Address of the Owner, where		3,80
DY @ 1 Mitz	The second	0.0140	0.0070	0.0000
Df @ 1 Gfu	0.0050	8.0130	0.0080	0.0080
Df @ 2 Ghz	0.0060	-		
Dr @ 6 Gtu	D-0066			
Df @-10 Gfut	0.0000	- 1		0.0090

2-3X FR-4

Casefore: Use or a rough guair only. The chicals shown are taken from laminable seguror date shows. Results very skip to learn

- Tier 3, very low loss electrical performance (<0.006 pf)
 - Materials advertised to be lead-free capable

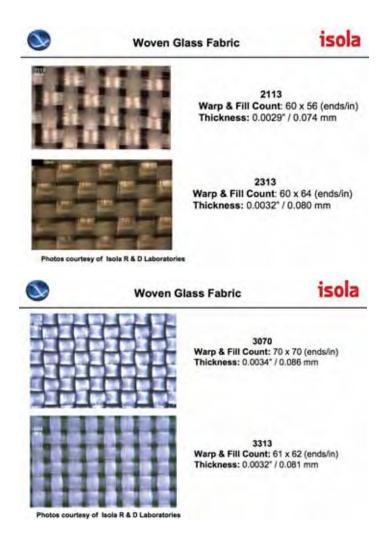
Supplier Material ID	MCL-FX-it	ineta ineso	Minuteson FL700	Marcurywave	fileton DR250	Panesono Megtron 6
ON SET MINZ		Rf designs	New(preim.	Hf designs	-	
Dk @ 1 Ghr	3.48	DTIV	3.80	D00y	3.90	2.7
Dk @ 2 Gha	3.47	2.80 - 3.45		3.70	3.80	3.4
Dk @ 5 Ghz	3.46	2.80 + 3.45	3.70			3.4
Di @ 10 Ghz	3.45	2.80+3.45	3.60	3.60	3.65	3.4
Of 45 1 Mhs						
DY @ 1 Ghz	0.0028	Line and the second	0.0030		0.0020	0.0020
Of @ 2 Ghz	0.0039	0028-0036		0.0040	0.0040	0.0020
Of (b) 5 Ghz	0.0046	.0028-3036	0.0040			0.0000
Of 69 10 Ghz	8.0052	:0028-:000M	0.0060	0.0040	0.0045	0.0040

Note: Materials shown for comparison purposes. Some materials may not be available at Chippews Falls.

3-6X FR-4

Charton: Use as a rough guiltr uny. The pinkelt above are lained from limitate. suggiore date private. Pinkelts view pue le last melhod and sample construint. Effertures

^{*} Rogers Theta material is equivalent to Hitachi's HE-679G

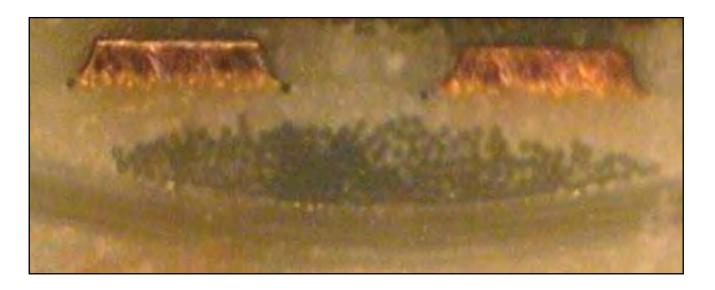

Woven Glass Fabric

 106 / 1080 glass do not perform well at speeds above 6.25Gbps.

 This glass performs well for 10Gbps.

isola

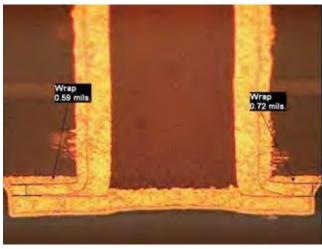
 This glass performs well for 10Gbps.


 This glass performs well for 10Gbps.

 Both Glass types behave well at 10Gbps and appear to work at speeds to 25Gbps.

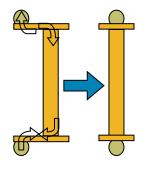
 7628 Does not perform well at high speeds in part to the Dielectric instability of the glass.

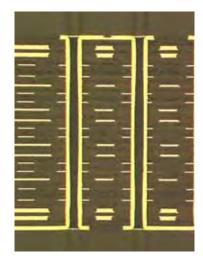
 Figure 1. Cross sectional view of differential signal pair with very equal proximity and alignment to the fiberglass yarn bundle. Within a few inches this can and does change to skewed alignment relative to signals



The New High Speed Channel: 25Gbps

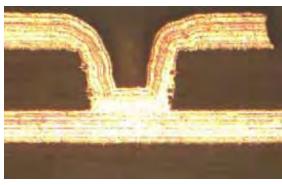
VIA in PAD Plated Over (VIPPO) Technology


VIA in PAD

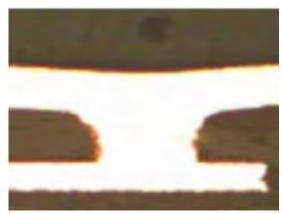


VIA in PAD Plated Over

Item	Comment
Signal Integrity	Eliminate dogbones
Routability	Very little – freed up outer layer area, but requires outer layer features and spaces
Reliability (SnPb)	Proven
Reliability (Pb-free)	No issues found yet
Supply Base	Large
Process Complexity	Moderate — additional plating, epoxy fill and planarization
Cost	~10-25% adder, dependant on tech level, layer count, etc
Hidden Cons	Restricted OL feature size
	Restricted OL spacing

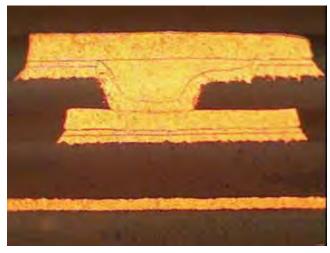


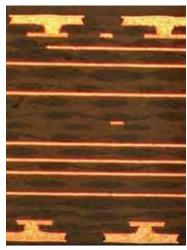
Micro VIA

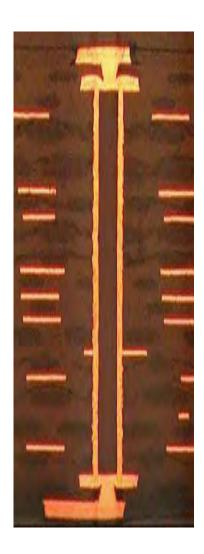

What is it?

A standard through hole board with controlled depth vias (laser formed) which connect layer 1 to 2 and n to (n-1)

Vias can be conformal plated or Cu fill plated




Conformal plated laser via



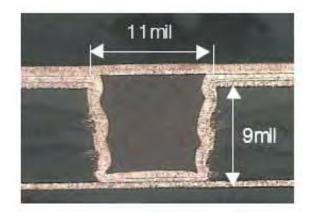
Fill plated laser via

Micro VIA

Micro VIA

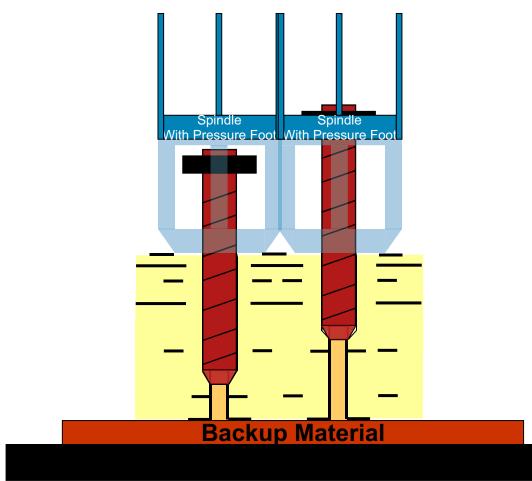
Item	Comment
Signal Integrity	Small, stubless via
Routability	Freed up space on layer below via
Reliability (SnPb)	Proven - Passed L1 & L2 qualifications
Reliability (Pb-free)	Proven - Passed L1 & L2 qualifications
Supply Base	Large
Process Complexity	Minimal – laser drilling and microvia platingpretty common technology for most suppliers
Cost	~5-15% (Conformal plated) ~15-40% (Cu fill plated)
Hidden Cons	Design tools not 100% optimized

Skip VIA

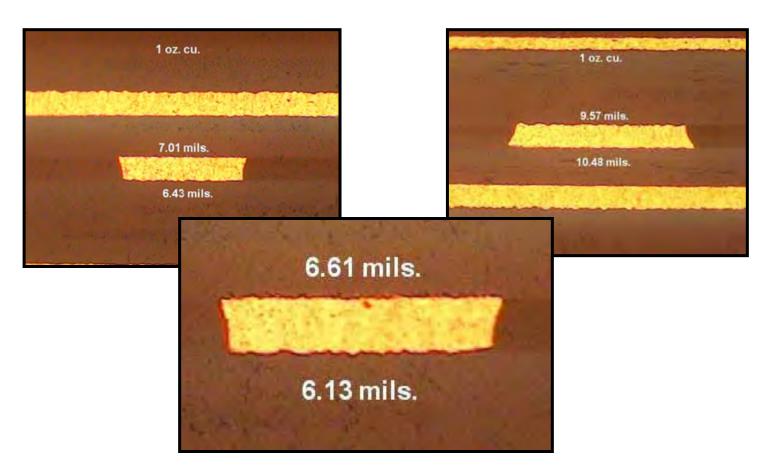

What is it?

Laser vias which connect layer 1 to 3 and n to (n-2)

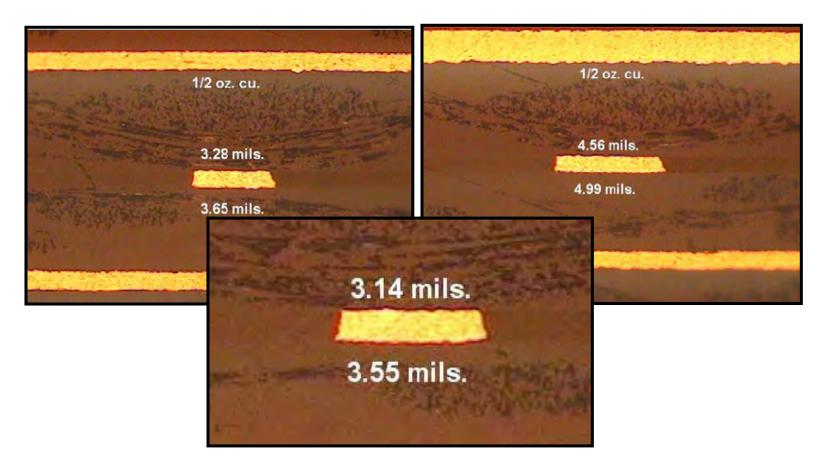
Normally combined with the use of microvias


Vias can be conformal plated or epoxy filled and plated over (SKIPPO)

Item	Comment
Signal Integrity	Stubless via connection for high speed signals
Routability	Freed up space on layer below via
Reliability (SnPb)	Passed
Reliability (Pb-free)	Passed
Supply Base	Limited
Process Complexity	Moderate – complex laser drilling process
Cost	~15-20% (Conformal plated) ~30-40% (SKIPPO)
Hidden Cons	Prone to laminate cracking below via


Back Drilling

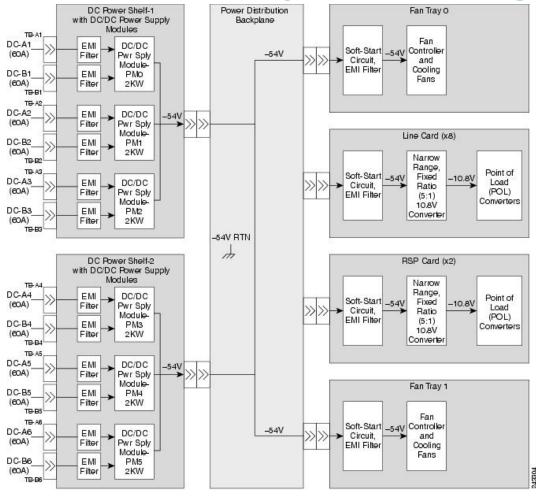
- Back Drilling is a well defined process with very low cost impact.
- Stop depth tolerance can be as low as +/- 5 mils but often is in the range of +/- 10 mils.
- Removes a significant portion of the stub.
- Don't be afraid to deploy this fabrication technology.
 Seldom used in 2000, this technique is used today in almost all high speed designs.


1 oz Copper Signal Internal Characteristics

- 1 oz copper trapezoid shape ~ .50 -.90 mils total width reduction at top
- Copper thickness ~ 1.10-1.25 mils typically

1/2 oz Copper Internal Signal Characteristics

- ½ oz copper trapezoid shape ~ .40 -.50 mils total width reduction at top
- Copper thickness ~ .55 -.65 mils typically



Copper Surface Roughness

- Much work has been done here.
- Impact at 10Gbps is not worth the added costs.
- Impact at 25Gbps shows improvement but still might not be worth the cost. Looking at a 15% to 20% cost adder.
- It really comes down to Channel Margin.

The Power System

Typical A/B Power System Design

SERDES Core Power Design Max Noise Targets

SERDES Core Power

Target < 30 mV, 1 MHz - 20 Mhz

Target < 60mV, 21Mhz - 500Mhz

SERDES PLL Power

Target < 10mV, 1MHz – 20MHz

SERDES RX Power

Target < 15mV, 1MHz – 20Mhz

Target < 30mV, 21Mhz – 500Mhz

SERDES TX Power

Target < 15mV, 1MHz – 20Mhz

Target < 30mV, 21Mhz - 500Mhz

The Take Away Slide

- Technical Feasibility
 - Geometry
 - Material
 - Fabrication Process
- Economic Feasibility
 - •25Gbps PCB about 2X 10Gbps PCB