VITESSE®

Making Next-Generation Networks a Reality.

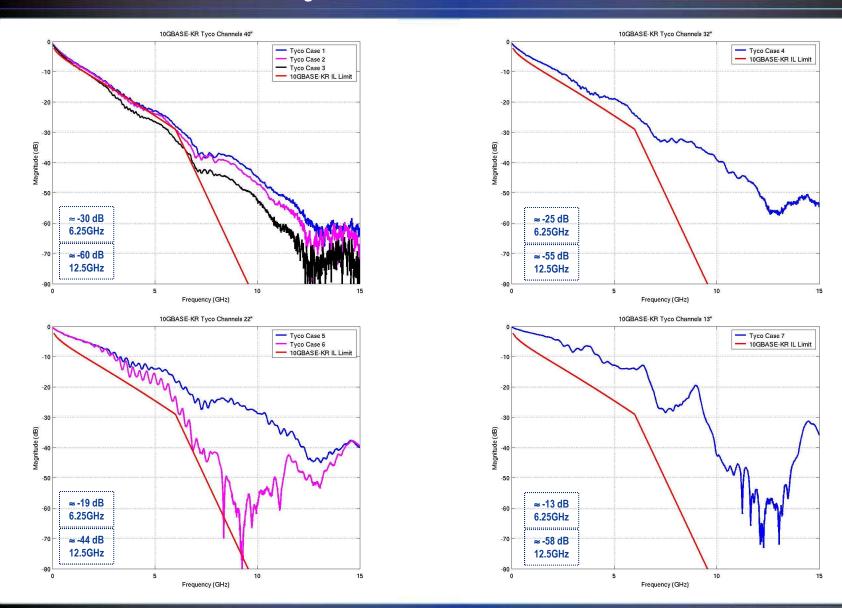
Channel Analysis for Defining Reach and BER Objectives

IEEE 802.3 100GCU Study Group Plenary Meeting, Singapore

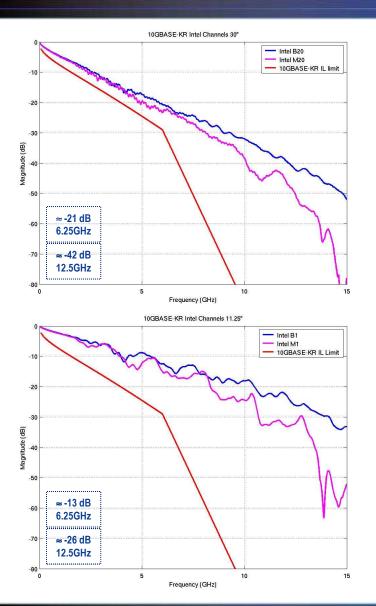
Ziad Hatab March 15-16, 2011

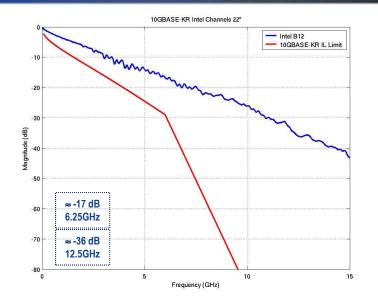
Contributors

- Mandeep Chadha, Vitesse
- Frank Chang, Vitesse


Outline

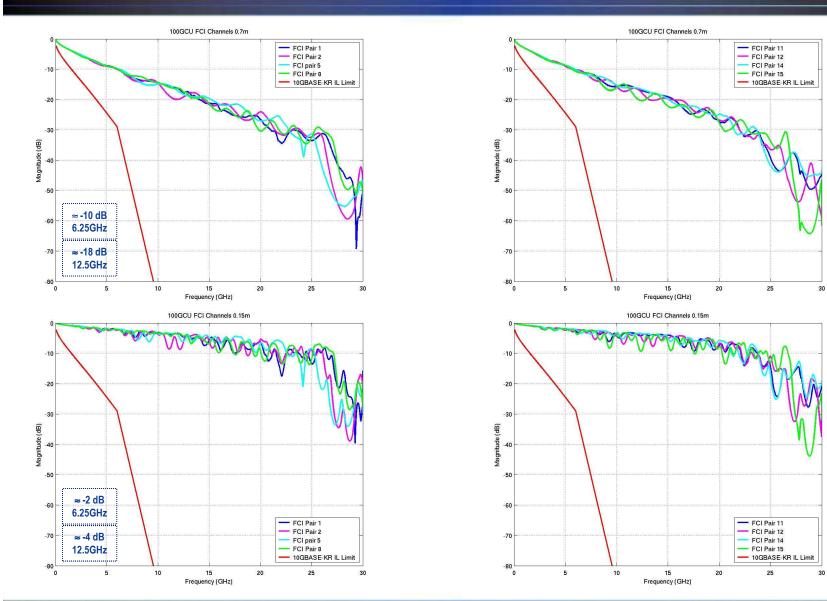
10GBASE-KR Channel Analysis:

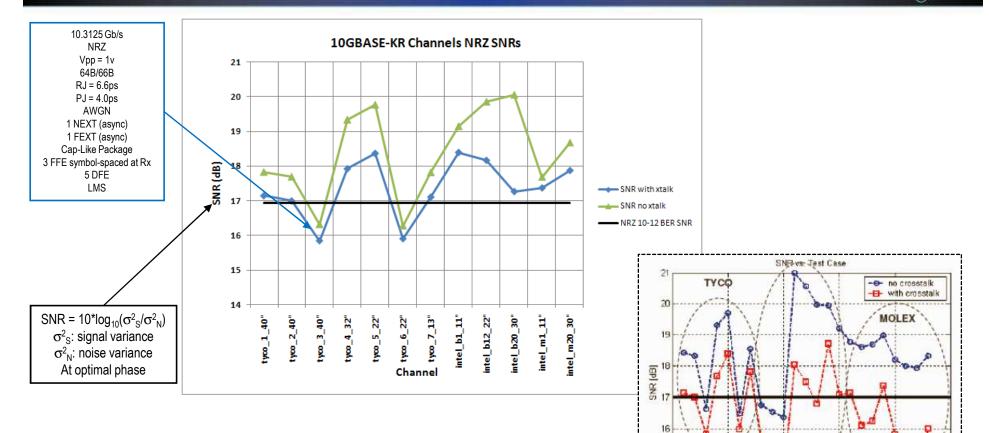

- Consider IEEE channel models: Tyco and Intel
- Establish reference point for SNR calculations at 10Gb/s
- Investigate performance at 25 Gb/s using PAM-4
- 100GCU Channel Analysis:
 - Consider IEEE channel models: FCI
 - Investigate performance at 25 Gb/s using NRZ and PAM-4
- Reach Objectives
- BER Objectives



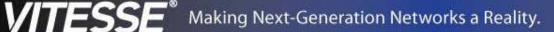
10GBASE-KR Tyco Channels: 13"–40"

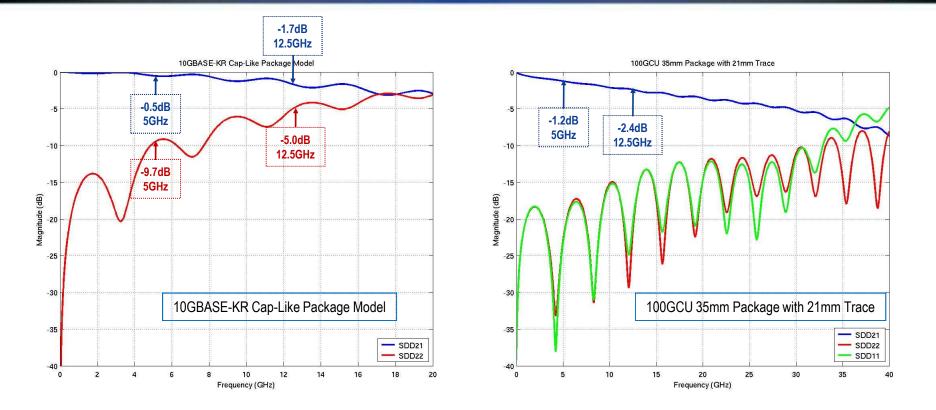
10GBASE-KR Intel Channels: 11.25"-30"




0

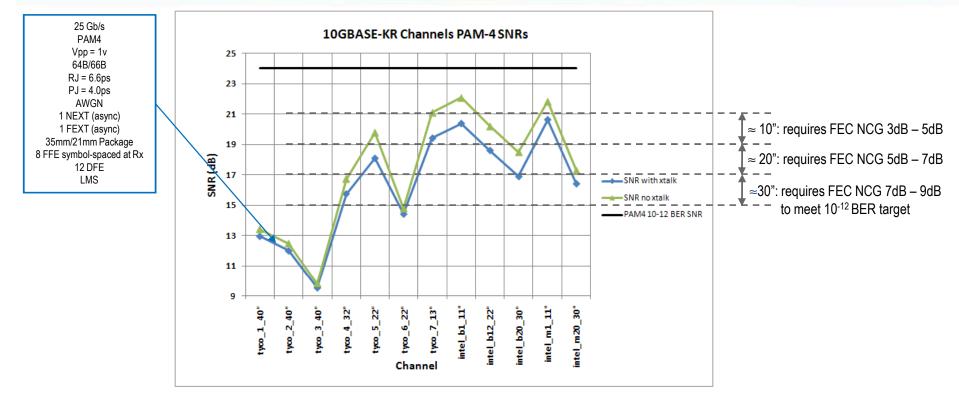
100GCU FCI Channels: 6"–27"


10GBASE-KR Channels SNR Results at 10 Gb/s


- Good correlation with "healey_01_0505.pdf" for Tyco channels.
- Some mismatch for Intel channels:
 - Intel channels were updated on June 2005.
 - Left out the T channels due to poor performance even at 10Gb/s.
- (2112,2080) FEC NCG of 2.5 dB allows all channels to meet 10⁻¹² BER target

14 14 5 10 Test Case Source: www.ieee802.org/3/ap/public/may05/healey_01_0505.pdf

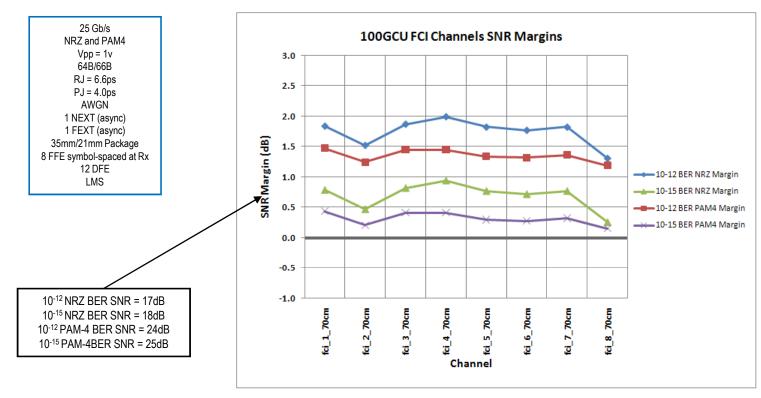
INTEL



Package Models

- Very large RL at high frequencies for 10GBASE-KR package model.
- ▶ In following simulations, use 100GCU 35mm/21mm package model.

10GBASE-KR Channels SNR Results at 25 Gb/s



• At 25Gb/s:

- Increase equalizer size by factor of 2.5:
 - Proportional to increase in baud rate: (25GHz/10GHz)
- SNR margin analysis using PAM-4 only :
 - PAM-4 to outperform NRZ: IL at $f_{Nyquist-PAM4} f_{Nyquist-NRZ} > 10 \text{ dB}$
 - Channels measured f_{max} = 15GHz and NRZ $f_{Nyquist}$ = 12.5GHz \rightarrow potentially unreliable results

100GCU FCI 0.7m Channels SNR Results at 25

0

• At 25Gb/s and 0.7m (27"):

Gb/s

▶ PAM-4 and NRZ have similar performance

- IL at
$$f_{Nyquist-PAM4} - f_{Nyquist-NRZ} \approx 9 \text{ dB}$$

Little or no FEC needed

VITESSE

Solution Space Summary

Channel	Total Length (inches)	Materials (Line Card Backplane)	IL at 6.25 GHz (dB)	ILD	Required FEC NCG for 0 dB margin at 10 ⁻¹² BER (dB)	Required FEC NCG for 0 dB margin at 10 ⁻¹⁵ BER (dB)
Тусо 4	32	Nelco 4000-13 Nelco 4000-13SI	-25.5	"Medium"	8.3	9.3
Intel B20	30	Nelco 4000-6 Nelco 4000-13	-21	"Low"	7.2	8.2
Intel M20	30	Nelco 4000-6 Nelco 4000-13	-22	"Medium"	7.6	8.6
FCI 1-8	27	Megtron-6 Nelco 4000-13SI	-10	"Medium"	0	0
Тусо 6	22	Nelco 4000-13 Nelco 4000-13	-29	"High"	9.6	10.6
Тусо 5	22	Nelco 4000-13 Nelco 4000-13	-19	"Medium"	6	7
Intel B12	22	Nelco 4000-6 Nelco 4000-13	-17	"Low"	5.4	6.4
Тусо 7	13	Nelco 4000-13SI Nelco 4000-13SI	-13.5	"High"	4.6	5.6
Intel B1	11	Nelco 4000-6 Nelco 4000-13	-13.5	"Medium"	3.7	4.7
Intel M1	11	Nelco 4000-6 Nelco 4000-13	-15	"High"	3.4	4.4

VITESSE[®] Making Next-Generation Networks a Reality.

0

Remarks on SNR Margins

- We have presented preliminary high-level time-domain simulations intended to help with the reach and BER objectives:
 - Limited to 10GBASE-KR and 100GCU public channel data:
 - Data is consistent with proprietary customer channels.
 - Additional performance tweaking is possible through various parameters:
 - Тх Vрр
 - Number of FFE and DFE taps
 - Etc.
 - Additional level of simulation details and analysis will be incorporated in future presentations.
- At 25 Gb/s, there is a wide gap in channel quality between 10GBASE-KR and 100GCU channels:
 - 10GBASE-KR channels:
 - Multi-level line coding will be required even for short reaches of 11".
 - Support for compliant channels with reaches up to 30" appears very challenging.
 - FEC required.
 - No tolerance to ILD.
 - ▶ 100GCU FCI channels:
 - NRZ appears to be sufficient to support channels with reaches up to 27".
 - FEC optional.

ESSE

- Reasonable tolerance to ILD.

Reach and BER Objectives

- Support for 10GBASE-KR channels appears to be viable only for limited reaches and stricter ILD control:
 - Reaches up to ≈ 22 ":
 - Multi-level line coding, e.g. PAM-4 will be required.
 - FEC with NCG of 6 dB will be required to achieve 10⁻¹² BER
 - FEC with NCG of 7 dB will be required to achieve 10⁻¹⁵ BER
 - Reaches up to ≈ 13 ":
 - Multi-level line coding, e.g. PAM-4 will be required.
 - FEC with NCG of 4.5 dB will be required to achieve 10⁻¹² BER
 - FEC with NCG of 5.5 dB will be required to achieve 10⁻¹⁵ BER
- Support for 100GCU FCI channels:
 - Reaches up to 27":
 - NRZ is sufficient
 - FEC optional
 - Positive SNR margins at 10⁻¹⁵ BER:
 - Possible to increase reach beyond 27".

