

Feasibility Of 100G-KR FEC

Zhongfeng Wang and Chung-Jue Chen Broadcom Corp., USA

Contributors

- Mark Gustlin, Cisco
- Howard Frazier, Broadcom
- Sudeep Bhoja, Broadcom
- John Wang, Broadcom
- Vasu Parthasarathy, Broadcom
- Hongtao Jiang, Broadcom
- Wenwei Pan, Broadcom

Supporters

- Adee Ran, Intel
- Rich Mellitz, Intel

Outline

- Introduction
- Coding Strategy
- Candidate FEC Goals
- Candidate FEC Codes Meeting the Target Goals
- A Real Case Study on Performance, Latency and Complexity
- Conclusion

Introduction

- Previous talk [1] has addressed some advantages of coding across physical lanes, e.g., low latency, high coding gain
- Encoding with slightly higher redundancy than KR FEC has been discussed in March IEEE meeting
- RS code, being simple, is able to achieve good tradeoff between decoding random errors and burst errors

[1] Z Wang, "FEC Options for 100G-KR", IEEE 802.3 100GCu March Meeting

Coding Strategy

- Coding across physical lane is our main focus
- Bypass FEC decoding can minimize latency.

Alignment Option

- Standards Lane Alignment Markers can be used to find the FEC block boundary. The alignment marker is always at the beginning of a FEC block. The alignment marker is not part of the FEC block in the following example.
- > Another option is discussed in [1].
- Example RS(198,182), m=10
 - Every Physical lane will have 1820/(4x65) = 7 x 65b PCS blocks + (1980-1820)/4 = 40b (5 bytes) of FEC parity bits.
 - Alignment Markers will appear every (16383 x 66 x 5)/ (1980 / 4) = 10922 FEC blocks

Bus Width

45 45

45

erything

Lane (

Lane 1 Lane 2

Lane 3

Every 10922 FEC Blocks the alignment markers repeat, FEC Block = Blue, Alignment Markers = Yellow

Parity0 40Bits	PCS LN24	PCS LN20	PCS LN16	PCS LN12	PCS LN8	PCS LN4	PCS LN0	AM16	AM12	AM8	AM5	AM0	
Parity1 40Bits	PCS LN25	PCS LN21	PCS LN17	PCS LN13	PCS LN9	PCS LN5	PCS LN1	AM17	AM13	AM9	AM5	AM1	
Parity2 40Bits	PCS LN26	PCS LN22	PCS LN18	PCS LN14	PCS LN10	PCS LN6	PCS LN2	AM18	AM14	AM10	AM6	AM2	
Parity3 40Bits	PCS LN27	PCS LN23	PCS LN19	PCS LN15	PCS LN11	PCS LN7	PCS LN3	AM19	AM15	AM11	AM7	AM4	
													1

[1] Mark Gustlin *"FEC Striping Options for 100 Gb/s Backplane and Copper Study Group"*, IEEE 802.3, Incline Village, May 2011

Candidate FEC Goals

- Source data: multiple of 65 bits
- Latency (transmission +processing): < 100 ns
- Coding gain: > 5 dB @1e-15
- Hardware complexity: < 0.1 mm² (28nm)

Reed-Solomon Codes

• RS(n, k, t) defined over GF(2^m)

- Source data: k symbols = k* m bits
- Coded block: n symbols = n * m bits
- Random error correcting capability: t errors

RS decoding steps [1]

- Syndrome Computation (SC): takes n/p cycles, when p denotes the parallel level of processing in a design
- Key Equation Solver (KES): normally takes 2*t cycles,
- Chien Search and Forney (CSnF): takes n/p + (1~2) cycles.

[1] B. Chen, X. Zhang, and Z. Wang, "Error correction for multi-level NAND flash memory using Reed-Solomon codes," IEEE SiPS'2008.

Candidate FEC Code-I

• RS(198, 182, t=8), m=10,

- Clocking requirement 27.61Ghz
- Net Coding Gain ~ 6.16 dB,
- Burst error capability: max=80 bits
- > Source data = 65bx28, coded data = 1980b
- Total Latency ~66ns
- \succ Details of this code will be provided in later slide.

Candidate FEC Code-II

• RS(276, 260, t=8), m=10,

- Clocking requirement 26.94Ghz
- Net Coding Gain ~ 6.10 dB
- ➢ Burst error cap.: max=80 bits
- Source data = 65bx40, Coded data = 2760b
- ➢ Total latency: ∼ 82 ns

Candidate FEC Code-III

• RS(280, 260, t=10), m=10

- Clocking Requirement 27.35Ghz
- Net coding gain: ~ 6.44 dB
- Burst error capability: max=100 bits
- > Source data = 65bx40, coded data = 2800b
- > Total latency: ~92ns

A Real Case Study

• RS(198, 182, t=8), m=10

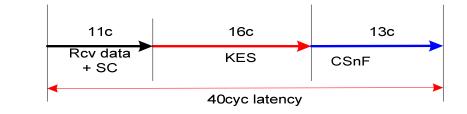
- Bus width= 180bits
- Clock frequency: ~600 Mhz

Decoder Architecture

- Compute the syndromes as data arrives, parallel level =18
- Take 2*t=16 cycles to solve Key Equation
- Take same parallel level (18) for Chien Search & Forney

• Decoder Complexity

Synthesized Area (relative to Fire code over Virtual Lane): < 1x



A Real Case Study (II)

Latency

Timing

> Overall Latency ~ 66ns

Multi-code interleaving options

Can linearly increase the tolerance of burst errors and DFE error propagation

> With 2 code interleaved, overall latency is less than 88 ns

> With 4 code interleaved, the overall latency is less than 120 ns

Comparison with KR Fire code

Net Coding Gain

RS(198,182) ~ 6.16 dB, Fire code ~ 2.3 dB

Burst Error across Lanes

- >RS(198,182) = 80 bits, Fire code = 11bits
- >4xInterleaved RS ~ 310 bits, Virtual Lane Fire code ~ 220 bits

• Latency

- >RS(198,182) ~ 66 ns, Virtual Lane Fire code ~ 420 ns
- >4xInterleaved RS ~ 120 ns

Complexity

- The area is roughly <1x that of the Virtual Lane Fire code</p>
- > The absolute area is very small in 28 nm (<0.1 mm²)

Clocking

> The RS(198,182) code requires ~6% higher clock than Fire code.

Conclusion

• FEC codes with small complexity, significant coding gain and low latency for 100GBASE-KR4 systems are technically feasible.

