P802.3ck

Submitter Email: david law@ieee.org

Type of Project: Amendment to IEEE Standard 802.3-2015

PAR Request Date: 23-Jan-2018

PAR Approval Date: PAR Expiration Date:

Status: Unapproved PAR, PAR for an Amendment to an existing IEEE Standard

1.1 Project Number: P802.3ck **1.2 Type of Document:** Standard

1.3 Life Cycle: Full Use

2.1 Title: Standard for Ethernet

Amendment: Physical Layer Specifications and Management Parameters for 100 Gb/s, 200 Gb/s, and 400 Gb/s electrical interfaces based on 100 Gb/s signaling.

3.1 Working Group: Ethernet Working Group (C/LM/WG802.3)

Contact Information for Working Group Chair

Name: David Law

Email Address: david law@ieee.org

Phone: +44 1631 563729

Contact Information for Working Group Vice-Chair

Name: Adam Healey

Email Address: adam.healey@broadcom.com

Phone: 6107123508

3.2 Sponsoring Society and Committee: IEEE Computer Society/LAN/MAN Standards Committee (C/LM)

Contact Information for Sponsor Chair

Name: Paul Nikolich

Email Address: p.nikolich@ieee.org

Phone: 8572050050

Contact Information for Standards Representative

Name: James Gilb

Email Address: gilb@ieee.org

Phone: 858-229-4822

4.1 Type of Ballot: Individual

4.2 Expected Date of submission of draft to the IEEE-SA for Initial Sponsor Ballot: 03/2020

4.3 Projected Completion Date for Submittal to RevCom

Note: Usual minimum time between initial sponsor ballot and submission to Revcom is 6 months.: 10/2020

5.1 Approximate number of people expected to be actively involved in the development of this project: 80

5.2.a. Scope of the complete standard: This standard defines Ethernet local area, access and metropolitan area networks. Ethernet is specified at selected speeds of operation; and uses a common media access control (MAC) specification and management information base (MIB). The Carrier Sense Multiple Access with Collision Detection (CSMA/CD) MAC protocol specifies shared medium (half duplex) operation, as well as full duplex operation. Speed specific Media Independent Interfaces (MIIs) provide an architectural and optional implementation interface to selected Physical Layer entities (PHY). The Physical Layer encodes frames for transmission and decodes received frames with the modulation specified for the speed of operation, transmission medium and supported link length. Other specified capabilities include: control and management protocols, and the provision of power over selected twisted pair PHY types.

5.2.b. Scope of the project: This project is to specify additions to and appropriate modifications of IEEE Std 802.3 to add Physical Layer specifications and Management Parameters for 100 Gb/s, 200 Gb/s, and 400 Gb/s electrical interfaces based on 100 Gb/s signaling.

5.3 Is the completion of this standard dependent upon the completion of another standard: No

5.4 Purpose: This document will not include a purpose clause.

5.5 Need for the Project: The continual growth of bandwidth demand has driven evolution of higher Ethernet speeds, most recently with 100 Gb/s, 200 Gb/s and 400 Gb/s Ethernet. To meet this growth, ongoing advancement in SERDES technology to higher rates of operation enables

the opportunity to develop higher density or lower cost electrical interfaces using 100 Gb/s signaling.

5.6 Stakeholders for the Standard: Users and producers of systems and components for servers, network storage, networking systems, data centers, high performance computing, and telecommunications carriers.

Intellectual Property

6.1.a. Is the Sponsor aware of any copyright permissions needed for this project?: No 6.1.b. Is the Sponsor aware of possible registration activity related to this project?: No

- 7.1 Are there other standards or projects with a similar scope?: No
- 7.2 Joint Development

Is it the intent to develop this document jointly with another organization?: No

8.1 Additional Explanatory Notes: Item 5.2: IEEE Std 802.3 is IEEE Standard for Ethernet Item 5.5: SERDES expands to serializer and deserializer circuit