

Rob Stone

100GEL Study Group, Chicago 2018

802.3 100GEL Study Group, Chicago 2018

Recap

- Historically the ToR switch serves several purposes:
 - Aggregation of server IO using low cost DAC cables
 - Enable oversubscription (i.e. more server bandwidth than optical uplink bandwidth) to minimize optics spend
- Highly cost sensitive
 - More ToRs than other class of switch in a datacenter
 - DAC has been the favored server attach media as it has provided the lowest cost per bit
- ToR design is often multi-purpose
 - ToR box can be used as an all optical switch (aggregation or spine)
- ToR bandwidth needs to be right-sized to total server rack bandwidth + uplink bandwidth
 - End users don't want to pay for unused bandwidth

Typical ToR

10, 25 and 50G / lane generation ToRs have the following characteristics:

- Generally a single switch ASIC per box, 1 RU
- Every port is universal
 - DAC, MMF, SMF optics <u>compatible host loss budgets</u>
- Power and cost optimized
 - No additional components (gearboxes, retimers)
- ~ 9" longest trace to most distant module
 - Historically OK to do this without a retimer for both DAC and VSR channels at 10, 25 and 50G / lane
- Switch lane speed is matched to server lane speed
 - Eliminates any gearboxing required to match server IO (drives cost and power)

How does 100G DAC fit within ToR application space?

- Useful ToR bandwidth is set by oversubscription ratio (Uplink : Downlink BW), server speed, and number of servers per rack
- Downlink bandwidth is equal to server bandwidth
- Number of servers may be rack power limited
 - high-end servers are ~ 365 W each¹, rack power limit ~ 15 kW

Total ToR Bandwidth (Tb/s), 1:3 OSR						
Server Bandwidth (Gb/s)	Servers per Rack					
	18	24	32	48	64	128
25	0.6	0.8	1.1	1.6	122//	A.3//
50	1.2	1.6	2.1	1132	43	1185
100	2.4	3.2	4.3	16A	///85///	17.9
200	4.8	6.4	8.5	///\$2.8///	17.0	34.0
400	9.6	12.8	17.0	25.5	34.0	68.1
Total Server Power (kW) / Rack	6.6	8.8	11.7	17.5	23.4	46.7

Addressed with current techology at 50G / lane and below

Rack Power Limited

¹ 2016 United States Data Center Energy Usage Report http://eta-publications.lbl.gov/sites/default/files/lbnl-1005775_v2.pdf

Should we specify DAC to support a shorter host channel?

- Several presentations on this option
 - lim_100GEL_adhoc_01_022618.pdf, haser_100GEL_adhoc_01_022618.pdf, mellitz_100GEL_adhoc_01_021218.pdf, tracy_100GEL_01_0318
- Will force use of retimers for many ToR ports
 - No longer DAC in the true sense!
 - Higher cost for these systems will negatively impact BMP, or drive architectural transition to EoR architectures
- Server side doesn't require 100G / lane IO
 - Not IO pin limited like the switch ASIC side of the link
 - Example: Today can support up to 48 x 200GE (4x50G) servers with 1:3 oversubscription on current technology
 - Unlikely servers will move to 100G / lane unless economics are favorable to do so

100G / Iane DAC Broad Market Potential

Suggested Requirements for Success

- Requires 100G / lane Servers
- Support a "Universal Switch Port"
 - Requires 9" host PCB traces
 - Don't sacrifice C2M budget for optical modules to support DAC budget doing so increases the power for all optical spine and EoR switches!
- Ensure DAC continues to provide a total low cost solution
 - Fully passive, no gearbox or retimers
- Minimum 2 m reach
 - See goergen_100GEL_01_0318

00

802.3 100GEL Study Group, Chicago 2018