I00Gb/s per Lane for Electrical Interfaces and Electrical PHYs

 Study Group: Status and Work
REMINDER TO BE FAMILIAR WITH POLICY

- IEEE PRE-PAR Patent Policy -
https://development.standards.ieee.org/myproject/Public/mytools/mob/preparslides.pdf
- IEEE 802 Participation - https://mentor.ieee.org/802-ec/dcn/I7/ec-I7-0093-05-0PNP-ieee-802-participation-slide-ppt.ppt

OUTLINE

- CFI recap
- Study group goals
- Timeline
- Proposed text
- Steps forward

CFI RECAP

- 146 gathered on Tuesday. Nov $7^{\text {th }}$ for Consensus building
- Panel and Contributors:
- John D’Ambrosia, Futurewei
- David Ofelt, Juniper
- Kent Lusted, Intel
- Adam Healey, Broadcom
- Beth Kochuparambil, Cisco

$T_{\text {Thank }} y_{o u!}$

- Presentation given discussing market need, technical feasibility, and why now topics for $100 \mathrm{~Gb} / \mathrm{s}$ per lane for electrical interfaces and electrical PHYs.
- http://www.ieee802.org/3/cfi/III7_3/CFI_03_III7.pdf
- No questions brought forward on the floor.
- Study group, or even Task Force, -like material presented already back in May 2017

CFI RECAP - STRAW POLLS AND MOTION

- Should a study group be formed for " $100 \mathrm{~Gb} /$ s per Lane for Electrical Interfaces and PHYs"?
- I would participate in a "I00Gb/s per lane for Electrical Interfaces and PHYs" study group in IEEE 802.3.
- My company would support participation in a "I00Gb/s per lane for Electrical Interfaces and PHYs" study group. Tally: 45
- Move that the IEEE 802.3 Working Group request the formation of a Study Group to develop a Project Authorization Request (PAR) and Criteria for Standards Development (CSD) responses for "I00Gb/s per Lane for Electrical Interfaces and Electrical PHYs".

Yes: 93 No: 0 Abstain: ${ }^{5}$

STUDY GROUP

- $100 \mathrm{~Gb} / \mathrm{s}$ per Lane for Electrical Interfaces and Electrical PHYs Study Group - AKA I00G Electrical Lane SG, for short.
- Website: http://www.ieee802.org/3/I00GEL/index.htm|
- Goal of Study Group is to study the problem and develop the following:
- Objectives
- Responses to The Criteria for Standard Development (CSD) - aka 5 Criteria
- PAR
- Solving the problem, developing solutions, writing specifications are all Task Force activities

Overview of IEEE 802.3 Standards Process (1/5)Study Group Phase

TIMELINE

Quick Process

PAR, CSD, and Objectives in January
March Plenary
March $9^{\text {th }}$ (Plenary)

Approval Steps

Study Group
Working Group
WG Executive Committee
NesCom recommendation
Standards Board

Slower process

PAR, CSD, and Objectives in March or May
July Plenary
July $13^{\text {th }}$ (Plenary)

May Interim
(starts May $21^{\text {st }}$)

First Task Force Nov Plenary Meeting

FOUNDATIONAL OBJECTIVES

- Support a MAC data rates of I00, 200, and $400 \mathrm{~Gb} / \mathrm{s}$
- Support full-duplex operation only
- Preserve the Ethernet frame format utilizing the Ethernet MAC
- Preserve minimum and maximum Frame Size of current IEEE 802.3 standard
- Support a BER of better than or equal to I0-I2 at the MAC/PLS service interface (or the frame loss ratio equivalent) for single-lane $100 \mathrm{~Gb} / \mathrm{s}$ operation
- Support a BER of better than or equal to I0-13 at the MAC/PLS service interface (or the frame loss ratio equivalent) for single-lane $100 \mathrm{~Gb} / \mathrm{s}$ operation
- Support optional Energy-Efficient Ethernet operation

TOPICS FOR ADDITIONAL OBJECTIVES

- AUls
- Backplane
- Copper cable

POINTS OF CONVERGENCE AND CONTENTION

- AUI Convergence:
- Compatibility with defined I00G/lane Optics - re-use of FEC and PCS
- Power is critical
- AUI Contention:
- Chip-to-chip inclusion
- Proposed Objective:
- Define a single-lane $100 \mathrm{~Gb} / \mathrm{s}$ Attachment User interface (AUI) for electrical operation with a total channel insertion loss of <= "x"dB at " y " GHz.
- Define a two-lane $200 \mathrm{~Gb} / \mathrm{s} .$. . total channel insertion loss of <= "x" dB at "y" GHz.
- Define a four-lane $400 \mathrm{~Gb} / \mathrm{s} .$. . total channel insertion loss of $<=$ " x " dB at " y " GHz.

POINTS OF CONVERGENCE AND CONTENTION

- Backplane Convergence:
- More freedom for PHY definition
- Backplane Contention:
- Loss target: approx. 25 dB or approx. 30dB - Do we agree on die-to-die loss?
- Timeframe for convergence
- Proposed Objective:
- Define a single-lane $100 \mathrm{~Gb} / \mathrm{s}$ PHY for operation over electrical backplanes with a total insertion loss of $\leq " z " d B$ at 28 GHz .
- Define a two-lane 200Gb/s PHY... total insertion loss of \leq "z" dB at 28 GHz .
- Define a four-lane $400 \mathrm{~Gb} / \mathrm{s}$ PHY... total insertion loss of \leq "z" dB at 28 GHz .

POINTS OF CONVERGENCE AND CONTENTION

- Front-end Cable Convergence:
- Passive Copper cable is most economic for previous loss budgets
- Front-end Cable Contention:
- Usefulness of plausible reach: $3 \mathrm{~m} \rightarrow 2 \mathrm{~m}$
- Co-operation with defined PHYs, including FEC and PCS
- Proposed Objective:
- Define a single-lane $100 \mathrm{~Gb} / \mathrm{s}$ PHY for operation over twin-axial copper cable with lengths up to at least " w " m.
- Define a two-lane IOOGb/s PHY... up to at least "w" m.
- Define a four-lane $100 \mathrm{~Gb} / \mathrm{s}$ PHY... up to at least " w " m .

PROPOSED CSD TEXT

- KENT HASA DRAFT IN A SEPARATE DECK FOR TODAY

PROPOSED PAR - SCOPE

- STILLTO COME.

NEXT STEPS

- Dec. 20 ${ }^{\text {th }}$ - First Official Ad Hoc
- Straw polls **need to draft
- Ad Hocs - 9:05-10:30am PST
- Thurs. Dec $28^{\text {th }}$??
- Wednesdays Jan $3^{\text {rd }}$, Jan $10^{\text {th }}$, Jan $17^{\text {th }}$
- . 3 cd is Wednesday $10^{\text {th }}$ at 8 am , NGMMF is Thursday $\mathrm{II}^{\text {th }}$ at 8 am
- Request for presentations due Friday, Jan $12{ }^{\text {th }}$
- Presentations due Thursday, Jan $18^{\text {th }}$
- January Plenary - January 22-26
- We are likely to be meeting Thursday \& Friday \leftarrow NOT confirmed yet

THANK YOU!

Preserve the 802.3/Ethernet frame format at the MAC Client service interface.
Preserve min. and max. frame size of current 802.3 Std. Support existing media independent interfaces. Support operation over a single lane across 2 connectors over copper traces on improved FR-4 for links consistent with lengths up to at least 1 m .

- Define a 1 Gb/s PHY
- Define a 10 Gb/s PHY

Consider auto-negotiation.
Support BER of 10^-12 or better. Meet CISPR/FCC Class A.
Preserve the 802.3/Ethernet frame format at the MAC Client service interface.
Preserve min. and max. frame size of current 802.3 Std. Support existing media independent interfaces. Support operation over a single lane across 2 connectors over copper traces on improved FR-4 for links consistent with lengths up to at least 1 m .

- Define a 1 Gb/s PHY
- Define a 10 Gb/s PHY
- Define a 4-lane 10Gb/s PHY for operation over the 802.3ap channel model.
- Consider auto-negotiation.
- Support BER of 10^-12 or better.
- Meet CISPR/FCC Class A.
- Support full-duplex operation only
- Preserve the 802.3 / Ethernet frame format utilizing the 802.3 MAC
- Preserve minimum and maximum FrameSize of current 802.3 standard
- Support a BER of better than or equal to 10^{-12} at the MAC/PLS service interface
- Define a 4-lane $100 \mathrm{~Gb} / \mathrm{s}$ backplane PHY for operation over links consistent with copper traces on "improved FR4 " (as defined by IEEE P802.3ap or better materials to be defined by the Task Force) with lengths up to at least 1 m .
- Define a 4-lane $100 \mathrm{~Gb} / \mathrm{s}$ PHY for operation over links consistent with copper twin-axial cables with lengths up to at least 5 m .
- Support full-duplex operation only
- Preserve the 802.3 / Ethernet frame format utilizing the 802.3 MAC
- Preserve minimum and maximum FrameSize of current 802.3 standard
- Support a BER of better than or equal to 10^{-12} at the MAC/PLS service interface
- Define a 4 lane PHY for operation over a printed circuit board backplane with a total channel insertion loss of $<=35 \mathrm{~dB}$ at $12.9 \mathrm{GHz}^{* *}$
- Define a 4 lane PHY for operation over a printed circuit board backplane with a total channel insertion loss of $<=33 \mathrm{~dB}$ at $7.0 \mathrm{GHz}^{* *}$
- Define a 4-lane $100 \mathrm{~Gb} / \mathrm{s}$ PHY for operation over links consistent with copper twin-axial cables with lengths up to at least 5 m .
- To define optional Energy-Efficient Ethernet operation for 100G Backplane and Twinaxial cable PHYs specified in P802.3bj*
- To define optional Energy-Efficient Ethernet operation for 100GBASE-CR10***
- To define optional Energy-Efficient Ethernet operation for 40GBASE-CR4 and 40GBASE-KR4***

Objectives 1 of 2

- Support full-duplex operation only
- Preserve the Ethernet frame format utilizing the Ethernet MAC
- Preserve minimum and maximum FrameSize of current IEEE 802.3 standard
- Support optional Energy-Efficient Ethernet operation
- Provide appropriate support for OTN
- Support a MAC data rate of $50 \mathrm{~Gb} / \mathrm{s}$ and $100 \mathrm{~Gb} / \mathrm{s}$
- Support a BER of better than or equal to 10^{-12} at the MAC/PLS service interface (or the frame loss ratio equivalent) for $50 \mathrm{~Gb} / \mathrm{s}$ and $100 \mathrm{~Gb} / \mathrm{s}$ operation
- Support a MAC data rate of $200 \mathrm{~Gb} / \mathrm{s}$
- Support a BER of better than or equal to 10^{-13} at the MAC/PLS service interface (or the frame loss ratio equivalent) for $200 \mathrm{~Gb} / \mathrm{s}$ operation

Objectives 2 of 2

$50 \mathrm{~Gb} / \mathrm{s}$ Ethernet PHYs

- Define single-lane $50 \mathrm{~Gb} / \mathrm{s}$ PHYs for operation over
- copper twin-axial cables with lengths up to at least 3 m .
- printed circuit board backplane with a total channel insertion loss of $<=30 \mathrm{~dB}$ at 13.28125 GHz .
- MMF with lengths up to at least 100 m
- SMF with lengths up to at least 2 km
- SMF with lengths up to at least 10 km

$100 \mathrm{~Gb} / \mathrm{s}$ Ethernet PHYs

- Define a two-lane $100 \mathrm{~Gb} / \mathrm{s}$ PHY for operation over
- copper twin-axial cables with lengths up to at least $3 m$.
- printed circuit board backplane with a total channel insertion loss of $<=30 \mathrm{~dB}$ at 13.28125 GHz .
- MMF with lengths up to at least 100 m
- Define a single lane $100 \mathrm{~Gb} / \mathrm{s}$ PHY for operation over duplex SMF with lengths up to at least 500 m , consistent with IEEE P802.3bs Clause 124

$200 \mathrm{~Gb} / \mathrm{s}$ Ethernet PHYs

- Define four-lane $200 \mathrm{~Gb} / \mathrm{s}$ PHYs for operation over
- copper twin-axial cables with lengths up to at least 3 m .
- printed circuit board backplane with a total channel insertion loss of $<=30 \mathrm{~dB}$ at 13.28125 GHz .
- Define $200 \mathrm{~Gb} / \mathrm{s}$ PHYs for operation over MMF with lengths up to at least 100 m
- Support a MAC data rate of $200 \mathrm{~Gb} / \mathrm{s}$
- Support a MAC data rate of $400 \mathrm{~Gb} / \mathrm{s}$- Support a BER of better than or equal to 10^{-13} at the MAC/PLS service interface (or the frame loss ratioequivalent)
Support full-duplex operation only
- Preserve the Ethernet frame format utilizing the Ethernet MAC
Preserve minimum and maximum FrameSize of current Ethernet standard
Provide appropriate support for OTN
Provide physical layer specifications which support $200 \mathrm{~Gb} / \mathrm{s}$ operation over:
- At least 500 m of 4 -lane parallel SMF
- At least 2 km of SMF- At least 10 km of SMF
Provide physical layer specifications which support $400 \mathrm{~Gb} /$ s operation over:
- At least 100 m of MMF
- At least 500 m of SMF
- At least 2 km of SMF
- At least 10 km of SMF
- Specify optional Energy Efficient Ethernet (EEE) capability

0. Support optional Attachment Unit Interfaces for chip-to-chip and chip-to-module applications
