100Gb/s per Lane for Electrical Interfaces and Electrical PHYs Study Group: Status and Work

BETH KOCHUPARAMBIL – ACTING STUDY GROUP CHAIR EMPLOYED BY AND AFFILIATED WITH CISCO SYSTEMS

REMINDER TO BE FAMILIAR WITH POLICY

IEEE PRE-PAR Patent Policy -

https://development.standards.ieee.org/myproject/Public/mytools/mob/preparslides.pdf

IEEE 802 Participation – <u>https://mentor.ieee.org/802-ec/dcn/17/ec-17-0093-05-0PNP-ieee-802-participation-slide-ppt.ppt</u>

OUTLINE

CFI recap

- Study group goals
- Timeline
- Proposed text
- Steps forward

CFI RECAP

- I46 gathered on Tuesday. Nov 7th for Consensus building
- Panel and Contributors:
 - John D'Ambrosia, Futurewei
 - David Ofelt, Juniper
- Kent Lusted, Intel
- Adam Healey, Broadcom
 Beth Kochuparambil, Cisco
- Presentation given discussing market need, technical feasibility, and why now topics for I00Gb/s per lane for electrical interfaces and electrical PHYs.
 - http://www.ieee802.org/3/cfi/1117_3/CFI_03_1117.pdf
 - No questions brought forward on the floor.
- Study group, or even Task Force, -like material presented already back in May 2017

CFI RECAP – STRAW POLLS AND MOTION

- Should a study group be formed for "100Gb/s per Lane for Electrical Interfaces and PHYs"?
 Yes: 137 No: 0 Abstain: 7
- I would participate in a "100Gb/s per lane for Electrical Interfaces and PHYs" study group in IEEE 802.3.
 Tally: 80
- My company would support participation in a "100Gb/s per lane for Electrical Interfaces and PHYs" study group.
 Tally: 45
- Move that the IEEE 802.3 Working Group request the formation of a Study Group to develop a Project Authorization Request (PAR) and Criteria for Standards Development (CSD) responses for "100Gb/s per Lane for Electrical Interfaces and Electrical PHYs". Yes: 93 No: 0 Abstain: 55

STUDY GROUP

- I00Gb/s per Lane for Electrical Interfaces and Electrical PHYs Study Group - AKA I00G Electrical Lane SG, for short.
- Website: <u>http://www.ieee802.org/3/100GEL/index.html</u>
- Goal of Study Group is to study the problem and develop the following:
 - Objectives
 - Responses to The Criteria for Standard Development (CSD) aka 5 Criteria
 - PAR
- Solving the problem, developing solutions, writing specifications are all Task Force activities

Overview of IEEE 802.3 Standards Process (1/5)-Study Group Phase

Note: At "Check Point", either the activity is ended, or there may be various options that would allow reconsideration of the approval.

TIMELINE

Quick Process

PAR, CSD, and Objectives in January

March Plenary March 9th (Plenary)

Approval Steps

Study Group Working Group WG Executive Committee

NesCom recommendation

Standards Board

Slower process

PAR, CSD, and Objectives in March or May July Plenary July 13th (Plenary)

(misses Sept interim, 10-14th)

Nov Plenary

FOUNDATIONAL OBJECTIVES

- Support a MAC data rates of 100, 200, and 400 Gb/s
- Support full-duplex operation only
- Preserve the Ethernet frame format utilizing the Ethernet MAC
- Preserve minimum and maximum Frame Size of current IEEE 802.3 standard
- Support a BER of better than or equal to 10-12 at the MAC/PLS service interface (or the frame loss ratio equivalent) for single-lane 100Gb/s operation
- Support a BER of better than or equal to 10-13 at the MAC/PLS service interface (or the frame loss ratio equivalent) for single-lane 100Gb/s operation
- Support optional Energy-Efficient Ethernet operation

TOPICS FOR ADDITIONAL OBJECTIVES

- AUIs
- Backplane
- Copper cable

POINTS OF CONVERGENCE AND CONTENTION

- AUI Convergence:
 - Compatibility with defined 100G/lane Optics re-use of FEC and PCS
 - Power is critical
- AUI Contention:
 - Chip-to-chip inclusion
- Proposed Objective:
 - Define a single-lane 100 Gb/s Attachment User interface (AUI) for electrical operation with a total channel insertion loss of <= "x" dB at "y" GHz.</p>
 - Define a two-lane 200 Gb/s... total channel insertion loss of <= "x" dB at "y" GHz.</p>
 - Define a four-lane 400 Gb/s... total channel insertion loss of <= "x" dB at "y" GHz.</p>

POINTS OF CONVERGENCE AND CONTENTION

- Backplane Convergence:
 - More freedom for PHY definition
- Backplane Contention:
 - Loss target: approx. 25dB or approx. 30dB Do we agree on die-to-die loss?
 - Timeframe for convergence
- Proposed Objective:
 - Define a single-lane 100Gb/s PHY for operation over electrical backplanes with a total insertion loss of ≤"z" dB at 28GHz.
 - Define a two-lane 200Gb/s PHY... total insertion loss of \leq "z" dB at 28GHz.
 - Define a four-lane 400Gb/s PHY... total insertion loss of ≤"z" dB at 28GHz.

POINTS OF CONVERGENCE AND CONTENTION

- Front-end Cable Convergence:
 - Passive Copper cable is most economic for previous loss budgets
- Front-end Cable Contention:
 - Usefulness of plausible reach: $3m \rightarrow 2m$
 - Co-operation with defined PHYs, including FEC and PCS
- Proposed Objective:
 - Define a single-lane I00Gb/s PHY for operation over twin-axial copper cable with lengths up to at least "w" m.
 - Define a two-lane I00Gb/s PHY... up to at least "w" m.
 - Define a four-lane I00Gb/s PHY... up to at least "w" m.

PROPOSED CSD TEXT

KENT HAS A DRAFT IN A SEPARATE DECK FOR TODAY

PROPOSED PAR - SCOPE

• STILL TO COME.

NEXT STEPS

- Dec. 20th First Official Ad Hoc
 - Straw polls **need to draft
- Ad Hocs 9:05-10:30am PST
 - Thurs. Dec 28th??
 - Wednesdays Jan 3rd, Jan 10th, Jan 17th
 - .3cd is Wednesday 10th at 8am, NGMMF is Thursday 11th at 8am
- Request for presentations due Friday, Jan 12th
- Presentations due Thursday, Jan 18th
- January Plenary January 22-26
 - We are likely to be meeting Thursday & Friday \leftarrow NOT confirmed yet

THANK YOU!

BACKUP SLIDES: PREVIOUS PROJECT OBJECTIVES

- Preserve the 802.3/Ethernet frame format at the MAC Client service interface.
- Preserve min. and max. frame size of current 802.3 Std.
- Support existing media independent interfaces.
- objectives Support operation over a single lane across 2 connectors over copper traces on improved FR-4 for links consistent with lengths up to at least 1m.
 - Define a 1 Gb/s PHY

S

initial

ap

 \mathbf{M}

- Define a 10 Gb/s PHY
- Consider auto-negotiation.
 - Support BER of 10⁻¹² or better.
 - Meet CISPR/FCC Class A.

- S Preserve the 802.3/Ethernet frame format at the MAC Client service interface.
 - Preserve min. and max. frame size of current 802.3 Std.
 - Support existing media independent interfaces.
- objectives Support operation over a single lane across 2 connectors over copper traces on improved FR-4 for links consistent with lengths up to at least 1m.
 - Define a 1 Gb/s PHY .

3ap

- Define a 10 Gb/s PHY
- Define a 4-lane 10Gb/s PHY for operation over the 802.3ap channel model.
- 02. \mathbf{O} Consider auto-negotiation.
 - Support BER of 10⁻¹² or better.
 - Meet CISPR/FCC Class A.

- Support full-duplex operation only
- Preserve the 802.3 / Ethernet frame format utilizing the 802.3 MAC
- Preserve minimum and maximum FrameSize of current 802.3 standard
- Support a BER of better than or equal to 10⁻¹² at the MAC/PLS service interface
- Define a 4-lane 100 Gb/s backplane PHY for operation over links consistent with copper traces on "improved FR-4" (as defined by IEEE P802.3ap or better materials to be defined by the Task Force) with lengths up to at least 1m.
- Define a 4-lane 100 Gb/s PHY for operation over links consistent with copper twin-axial cables with lengths up to at least 5m.

- Support full-duplex operation only
- Preserve the 802.3 / Ethernet frame format utilizing the 802.3 MAC
- Preserve minimum and maximum FrameSize of current 802.3 standard
- Support a BER of better than or equal to 10⁻¹² at the MAC/PLS service interface
- Define a 4 lane PHY for operation over a printed circuit board backplane with a
 - total channel insertion loss of <= 35 dB at 12.9 GHz**
- Define a 4 lane PHY for operation over a printed circuit board backplane with a total channel insertion loss of <= 33 dB at 7.0 GHz**
- Define a 4-lane 100 Gb/s PHY for operation over links consistent with copper twin-axial cables with lengths up to at least 5m.
- To define optional Energy-Efficient Ethernet operation for 100G Backplane and Twinaxial cable PHYs specified in P802.3bj*
- To define optional Energy-Efficient Ethernet operation for 100GBASE-CR10***
- To define optional Energy-Efficient Ethernet operation for 40GBASE-CR4 and 40GBASE-KR4***

Objectives approved by IEEE 802.3 WG July 2011 IEEE 802 Plenary * Objective approved by IEEE 802.3 WG Nov 2011 IEEE 802 Plenary ** Objectives approved by IEEE 802.3 WG Mar 2012 IEEE 802 Plenary *** Objectives approve by IEEE 802.3 WG July 2012 IEEE 802 Plenary

Objectives 1 of 2

- Support full-duplex operation only
- Preserve the Ethernet frame format utilizing the Ethernet MAC
- Preserve minimum and maximum FrameSize of current IEEE 802.3 standard
- Support optional Energy-Efficient Ethernet operation
- Provide appropriate support for OTN
- Support a MAC data rate of 50 Gb/s and 100 Gb/s
- Support a BER of better than or equal to 10⁻¹² at the MAC/PLS service interface (or the frame loss ratio equivalent) for 50 Gb/s and 100 Gb/s operation
 - Support a MAC data rate of 200 Gb/s
 - Support a BER of better than or equal to 10⁻¹³ at the MAC/PLS service interface (or the frame loss ratio equivalent) for 200 Gb/s operation

Objectives 2 of 2

50 Gb/s Ethernet PHYs

- Define single-lane 50 Gb/s PHYs for operation over
 - copper twin-axial cables with lengths up to at least 3m.
 - printed circuit board backplane with a total channel insertion loss of <= 30dB at 13.28125 GHz.
 - MMF with lengths up to at least 100m
 - SMF with lengths up to at least 2km
 - SMF with lengths up to at least 10km

100 Gb/s Ethernet PHYs

- Define a two-lane 100 Gb/s PHY for operation over
 - copper twin-axial cables with lengths up to at least 3m.
 - printed circuit board backplane with a total channel insertion loss of <= 30dB at 13.28125 GHz.
 - MMF with lengths up to at least 100m
- Define a single lane 100 Gb/s PHY for operation over duplex SMF with lengths up to at least 500 m, consistent with IEEE P802.3bs Clause 124

200 Gb/s Ethernet PHYs

- Define four-lane 200 Gb/s PHYs for operation over
 - copper twin-axial cables with lengths up to at least 3m.
 - printed circuit board backplane with a total channel insertion loss of <= 30dB at 13.28125 GHz.
- Define 200 Gb/s PHYs for operation over MMF with lengths up to at least 100m

- Support a MAC data rate of 200 Gb/s
 - Support a MAC data rate of 400 Gb/s
- objective Support a BER of better than or equal to 10⁻¹³ at the MAC/PLS service interface (or the frame loss ratio equivalent)
 - Support full-duplex operation only
 - Preserve the Ethernet frame format utilizing the Ethernet MAC
 - Preserve minimum and maximum FrameSize of current Ethernet standard
 - Provide appropriate support for OTN
 - Provide physical layer specifications which support 200 Gb/s operation over:
 - At least 500 m of 4-lane parallel SMF
 - At least 2 km of SMF
 - At least 10 km of SMF
- sq. Provide physical layer specifications which support 400 Gb/s operation over: \mathbf{m}
 - At least 100 m of MMF
 - At least 500 m of SMF
 - At least 2 km of SMF
 - At least 10 km of SMF
 - Specify optional Energy Efficient Ethernet (EEE) capability
- 802 Support optional Attachment Unit Interfaces for chip-to-chip and chip-to-module applications