Synthesized CR End to End Models for Objective Work

Richard Mellitz, Samtec

2/9/2019

IEEE 802.3 100 Gb/s per Lane Electrical Study Group

Channel description

- □ Synthesize complete best case channel for 100G CR cabling
- □ Use this to determine a loss limit for the 100Gel CR objective
 - Real cable reaches could be determined from this limit
- For this experiment flyover cabling is assumed on the line cards and a model of 2.0 m and 2.5 m of 28 AWG cable at 25 degrees C was used.
 - 3 FEXT, 4 NEXT, 1 THRU
- All models used were derived from modeling simulations tuned from measurements.
- □ It's likely manufacturing constrains for channels will not be this good
- □ For this experiment, BGA routing break outs are mostly electrically invisible
 - This will be called a BC BOR (best case break out region)
 - Practical channels will likely be worse
- □ All routing in the models have a differential impedance of 100 ohms
- □ It is likely routing closer to 90 ohms will perform better.

System Topology Overview: CR

2.0 dB Cable Loss and Crosstalk Plots

IEEE 802.3 100 Gb/s per Lane Electrical Study Group

2.5 dB Cable Loss and Crosstalk Plots

IEEE 802.3 100 Gb/s per Lane Electrical Study Group

COM Configuration Sheet Experiment

Table 93A-1 parameters				
Parameter	Setting	Units	Information	
f_b	53.125	GBd		
f_min	0.05	GHz		
Delta_f	0.01	GHz		
C_d	[1.5e-4 1.5e-4]	nF	[TX RX]	
z_p select	[123]		[test cases to run]	
z_p (TX)	[12 12 30]	mm	[test cases]	
z_p (NEXT)	[12 12 12]	mm	[test cases]	
z_p (FEXT)	[12 12 30]	mm	[test cases]	
z_p (RX)	[30 12 30]	mm	[test cases]	
C_p	[0.08e-4 0.08e-4]	nF	[TX RX]	
R_0	50	Ohm		
R_d	[50 50]	Ohm	[TX RX] or selected	
fr	0.75	*fb	Sciected	
 c(0)	0.6		min	
c(-1)	[-0.25:0.05:0]		[min:step:max]	
c(-2)	[0:0.025:0.15]		[min:step:max]	
c(-3)	0		[min:step:max]	
c(-4)	0		[min:step:max]	
c(1)	0		[min:step:max]	
g DC	[-16:0.5:0]	dB	[min:step:max]	
f z	21.25	GHz	[]	
f p1	21.25	GHz		
f p2	106.25	GHz		
A v	0.45	V	tdr selected	
A fe	0.45	V	tdr selected	
A ne	0.63	V	tdr selected	
L	4			
М	32			
Nb	38	UI		
b max(1)	0.7			
b max(2N b)	0.2			
sigma RJ	0.01	UI		
A DD	0.02	UI		
eta 0	1.64E-08	V^2/GHz		
SNR TX	35	dB	tdr selected	
R LM	0.96			
DER 0	1.00E-04			
Operational control				
COM Pass threshold 3 dB				
Include PCB	0	Value	0, 1, 2	

I/O control				
DIAGNOSTICS	1	logical		
DISPLAY_WINDOW	1	logical		
Display frequency domain	1	logical		
CSV_REPORT	1	logical		
	.\results\100G_Study_Gr			
RESOLT_DIR	oup_{date}\			
SAVE_FIGURES	0	logical		
Port Order	[1 3 2 4]			
RUNTAG	KR_Study_Group			
Receiver testing				
RX_CALIBRATION	0	logical		
Sigma BBN step	5.00E-03	V		
IDEAL_TX_TERM	0	logical		
T_r	7.00E-03	ns		
FORCE_TR	1	logical		

Non standard control options			
COM_CONTRIBUTION	0	logica	
TDR	0	logica	

g_DC_HP	[-12:1:-6]		[min:step:max]
f_HP_PZ	1.328125	GHz	

COM results	2.0 m results	_		\times
Case 1: z_p=(12, 3 Case 2: z_p=(12, 1 Case 3: z_p=(30, 3	0, 12, 12) (TX, RX, NEXT, F 2, 12, 12) (TX, RX, NEXT, F 0, 12, 30) (TX, RX, NEXT, F	FEXT):: COM = FEXT):: COM = FEXT):: COM =	= 3.036 dB = 2.569 dB = 1.895 dB	(pass) (FAIL) (FAIL)
	ОК			

IEEE 802.3 100 Gb/s per Lane Electrical Study Group

Summary

- 2 m and longer cables may require a very strong signaling architecture
- 2 m cables may be possible but will likely require heavy lifting for the chips and interconnect.
- Potential Working Group Activities
 - Determine how much relief could be gained with larger gage cable
 - Perhaps only 10% reach improvement.
 - Determine how much relief could be gained with 90 ohm target impedance
- 2.0 m cable objectives will likely require substantial work in the task force
- □ Will there be enough margin left for interoperable assemblies?