# Channel Model Simulations for 112Gbps Backplane Applications

### IEEE 802.3 100GEL Study Group Ad Hoc

Geoff Zhang, Xilinx

Feb. 26, 2018

## Outline

#### □ Introduction

- □ Simulation setup description
- □ Group-1: "Channel Simulations for 112G Backplane Analysis"
  - 1. Orthogonal Backplane Channels and xtalk
  - 2. Cabled Backplane Channels and xtalk

□ Group-2: "Initial Host Backplane Channel Models & Development Plans"

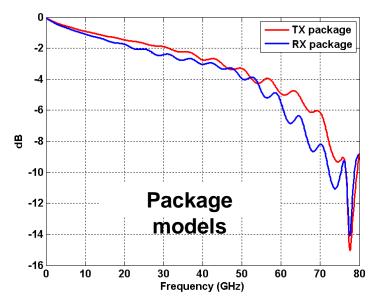
- 1. Backplane with 2 connectors, 30dB, 85ohm nominal impedance
- 2. Backplane with 2 connectors, 30dB, 85ohm high-low-high impedance
- 3. Backplane with 2 connectors, 30dB, 85ohm low-high-low impedance
- □ Comparison of two groups of channel models
- □ Summary and conclusions

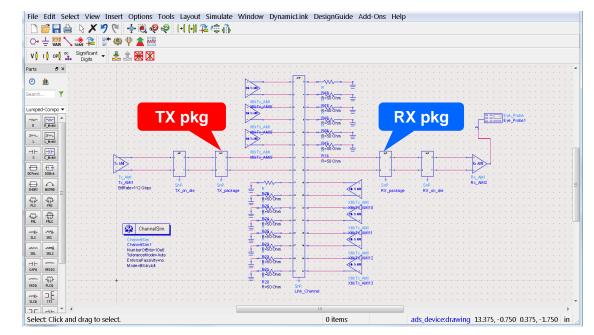
### Introduction

- □ Objective: define a single-lane 100 Gb/s PHY for operation over electrical backplanes supporting an insertion loss ≤ TBD dB at TBD GHz (28GHz for 112Gbps PAM4 signaling)
- Link models for the simulation are downloaded from

http://www.ieee802.org/3/100GEL/public/tools/index.html

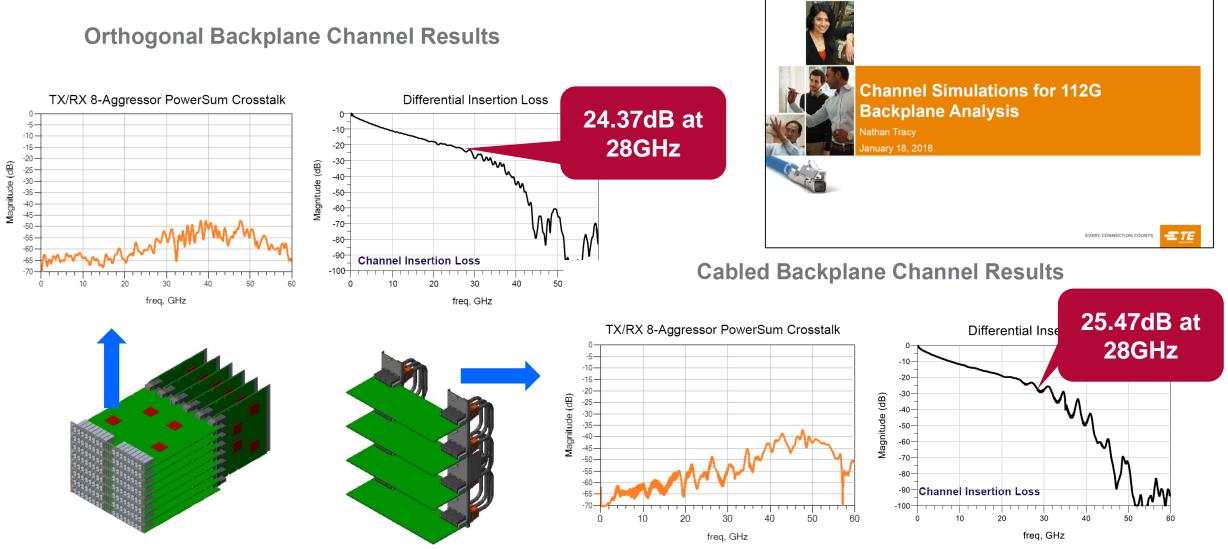
□ Specifically, backplane channel models from the following two groups are used





Initial Host Backplane Channel Models & Development Plans

- □ The simulation model
  - The IBIS-AMI model is based on Xilinx 112G-PAM4 SerDes design in 16nm
- □ The simulation platform is the Keysight Advanced Design System (ADS)

### **Simulation Setup in ADS**


- □ The IBIS-AMI model (TT corner) for 112Gbps/PAM4 is simulated in ADS
  - An example of the ADS setup is shown below, with 1 THRU, 3 NEXT and 4 FEXT (reconstructed .32p model)
- □ Victim channel TX is set to 920mVdpp; a 3-tap FIR for de-emphasis whose settings are manually set
- □ Aggressors' TX output swing is set to 1000mVdpp, without de-emphasis applied
- □ RX side equalizer (CTLE, AGC, DSP) and CDR parameter values are all adaptively tuned
- □ Impairments (jitter, noise, nonlinearity, etc.) are either set as AMI parameters or included in the model
- Data pattern: PRBS23 with Gray coding (2M symbols for convergence and 10M for post-processing)
- □ The package models are shown below

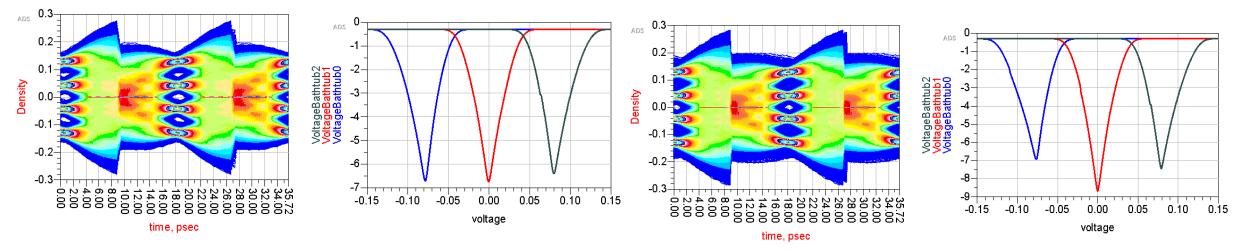




### **Channel Model Group-1**

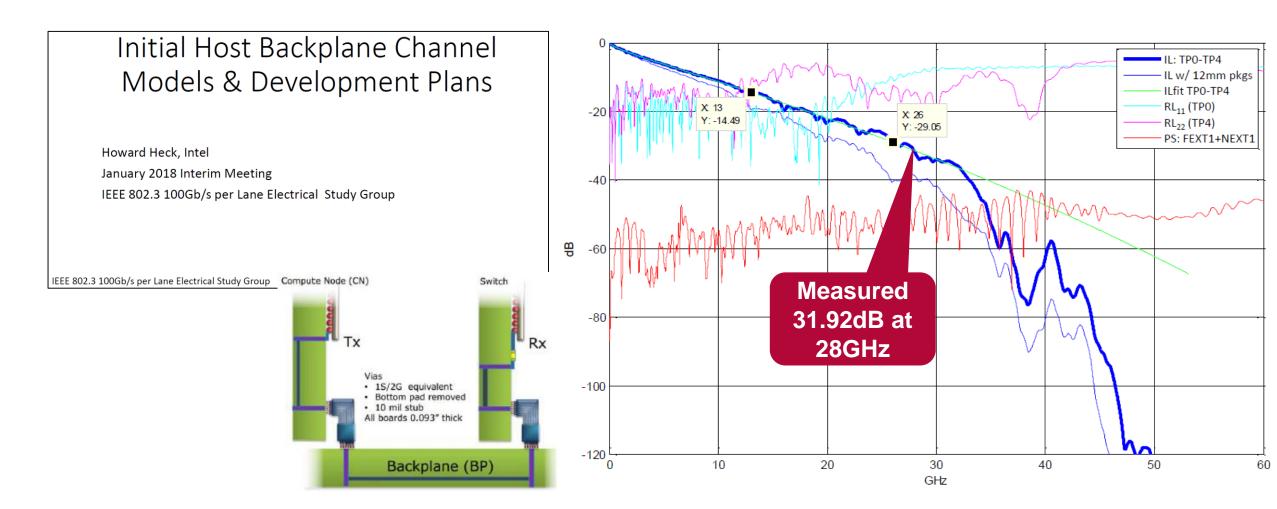
□ Full description of the two channel models are provided in the document by Nathan Tracy




### **Simulation Results for Group-1**

#### □ Simulated link performance is summarized in the table

With TX FIR setting perturbations, link performance pretty much remained comparable


| TX 3-tap FIR settings | [-0.075, 0.75, -0.175] | [-0.125, 0.75, -0.125] | [-0.175, 0.75, -0.075] |  |
|-----------------------|------------------------|------------------------|------------------------|--|
| Orthogonal Backplane  | 8.22e-8                | 2.27e-7                | 1.94e-7                |  |
| Cabled Backplane      | 3.11e-7                | 7.85e-8                | 3.51e-7                |  |

- The eye diagrams at the data slicers and voltage bathtub curves for the orthogonal backplane channel with TX FIR = [-0.125, 0.75, -0.125] are shown below
  - Left: PRBS23 with 8M symbols (more than one complete cycle of the PRBS pattern)
  - Right: PRBS31 with 50M symbols (<2.33% of one complete cycle) performance degradation is acceptable



### **Channel Model Group-2**

□ Full description of the models for the 3 channels are provided in the document by Howard Heck



## Channel Model Group-2 (Con't)

- In Group-2 the impedances of TX board, backplane, and RX board are varied to form Nom, HLH, and LHL
  - Insertion losses are almost the same
  - Return losses are very different

Insertion Loss

30

Frequency (GHz)

20

40

50

-20

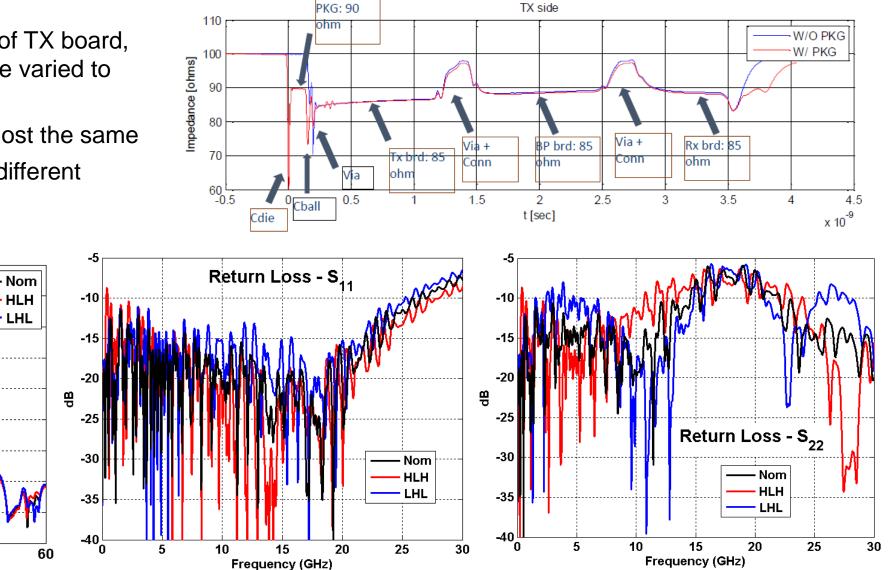
-40

-60

-80

-100

-120

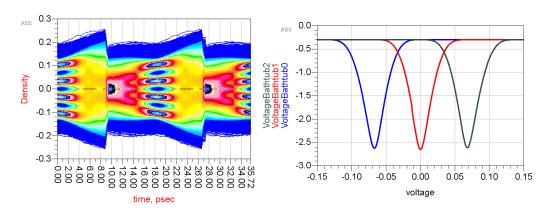

-140

-160

-180 L 0

10

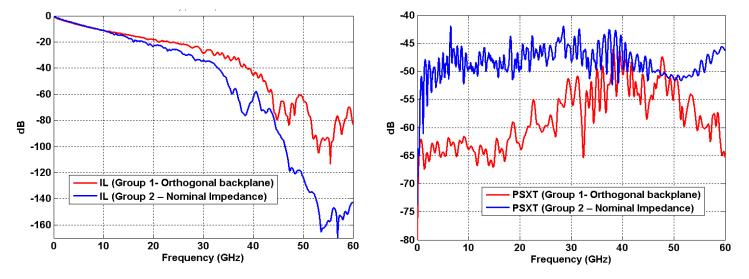
æ




### **Simulation Results for Group-2**

□ Simulated link performance is summarized in the table

| Channels<br>with full crosstalk | heck_100GEL_85ohm<br>_hlh_01_011718 | heck_100GEL_85ohm<br>_lhl_01_011718 | heck_100GEL_85ohm<br>_nom_01_011718 |  |
|---------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--|
| [-0.075, 0.75, -0.175]          | 3.22e-3                             | 3.31e-3                             | 3.21e-3                             |  |
| [-0.125, 0.75, -0.125]          | 2.81e-3                             | 3.11e-3                             | 2.92e-3                             |  |
| [-0.175, 0.75, -0.075]          | 2.18e-3                             | 2.43e-3                             | 2.07e-3                             |  |


- It is seen that link channels in Group-2 performed much worse than those in Group-1
  - Since the 3 channels performed similarly, impedance variation did not seem to be the main cause for link performance degradation comparing with Group-1
- The BER performance is again not a strong function of TX FIR settings, within a certain range



Eye diagram and voltage bathtubs for "Nom" and FIR = [-0.125, 0.75, -0.125]

### **Comparison of two groups of models**

- Taking one link channel from each group for a quick comparison
  - Group-1 has ~7dB less insertion loss at 28GHz than that in Group-2
  - Group-1 also has >10dB less aggregated crosstalk up to 30GHz
- With TX FIR fixed at [-0.125, 0.75, -0.125], the following sims are performed for better understanding of the differences



- Crosstalk is one of the dominant factors; by using the aggressor channels from Group-1, the Group-2 link performance improved by ~1.5 orders; while Group-1 channel BER increased by about 2 orders by using the crosstalk aggressor channels from Group-2
- Group-2 THRU channel also needs to be improved, as even without crosstalk, its performance is approximately 2 orders worse than Group-1 links with crosstalk

| Simulation Configurations                | Intrinsic setup             | Crosstalk from the other Group |  |  |
|------------------------------------------|-----------------------------|--------------------------------|--|--|
| Group-1: Orthogonal Backplane            | 2.27e-7                     | 1.10e-5                        |  |  |
| Crown 2: hook 100CEL 95chm nom 01 011719 | 2.42e-3                     | 9.84e-5                        |  |  |
| Group-2: heck_100GEL_85ohm_nom_01_011718 | 5.35e-5 (without crosstalk) |                                |  |  |

### **Extending Group-1 channel losses**

- Extending the channel insertion loss, using the orthogonal channel in Group-1 as an example, by cascading the channel with a small piece of PCB
  - The crosstalk to the receive input is not changed
  - It is seen that the insertion loss can be extended to 30dB ball to ball for the channels in Group 1 with good margin

| Ball-to-Ball IL (dB) | 24.37   | 26.26   | 28.06   | 29.82   | 31.66   | 33.45   |
|----------------------|---------|---------|---------|---------|---------|---------|
| Simulated BER        | 2.27e-7 | 3.84e-7 | 1.81e-6 | 5.93e-6 | 3.74e-5 | 1.45e-4 |

- □ For the case 31.66dB with crosstalk, the simulated BER is 3.74e-5
  - The channel in Group-2 31.92dB; with the same crosstalk from Group-1, the simulated BER is 9.84e-5

### **Summary and Conclusions**

- □ Two groups of channel models have been simulated at 112Gbps for PAM4 signaling
- Group-1 channels showed pretty good performance and robustness
  - There is not much difference in terms of the final BER between the orthogonal backplane and the cabled backplane configurations
- Group-1 outperformed Group-2 by about 4 order in the simulated BER
  - It is interesting to observe that the 3 variations in impedance profiles did not cause much BER difference
    - This is believed to be SerDes receiver architecture dependent
  - It is obvious that Group-2 channels need to reduce the amount of crosstalk coupling
  - It would be good if the channel insertion loss can be reduced to 30dB ball-to-ball
- With the package models used, it is concluded that, as long as the crosstalk is well controlled like the links in Group-1, the LR spec can be defined at 35dB bump-to-bump