

C2M AUI Options

Ali Ghiasi Ghiasi Quantum LLC

IEEE 802.3 100GEL Task Force Adhoc Meeting

May 9, 2018

Overview

- **To support 2 m of Cu cable the host/MDI loss needs to be ~11 dB**
- □ An 11 dB loss has significant implication on the C2M by requiring many retimers
- The contribution explores options not penalizing C2M applications while supporting 2 m Cu cable objective
 - Asymmetric switch-NIC link budget
 - Define 10-11 dB for Cu host/MDI loss while defining ~15 dB for C2M
 - A host requiring Cu cable support must have loss <10-11 dB
 - But host supporting optics/AOC/Active Cu may have channel with up to ~15 dB
- Each of the above 3 options have pros and cons, but what is clear we no longer have the luxury of assuming a common ports meets all applications with no power-cost penalty!

000000 Lim Proposal Ball-Ball Loss Needs to be Reduced to 28 dB $-\sqrt{/}$ **Based on 100GEL Objective** 000000

Figure 1: 100GEL C2M insertion loss budget at 26.56 GHz

Figure 2: 100GEL CR 30dB insertion loss budget at 26.56 GHz

©

10G SFP+

10G SFP+ was the first Ubiquitous port supporting optical and passive Cu

- 10G SFP+ supported 200-300 mm of host PCB trace on mid-grade material
- 10GSFP+ Cu DAC did not burden or reduce the host PCB trace
- lim_100GEL_01b_0318.pdf in order to support Cu cable even with best material Megtron 7NE PCB limited to 5-6".

1. Copper (oz) is defined as an ounce of copper over one square foot of laminate.

R

250 mm

R

C2M Channel Reach

PCB loss estimate assumptions and tools for calculation

- Rogers Corp impedance calculator (free download but require registration) <u>https://www.rogerscorp.com/acm/technology/index.aspx</u>
- Stripline ~ 50 Ω , trace width is 5.5 mils, and with ½ oz Cu
- Isola 408HR DK=3.65, DF=0.0095, RO=2.5 um, Meg-6 DK=3.4, DF=0.005, RO 1.2 μm, Tachyon100 DK=3.02, DF=0.0021, RO=1.2 μm
- To support equivalent PCB traces for C2M need at least 15 dB end-end channel loss consistent with tracy_100GEL_01a_0118

Host Trace Length (in)	Total Loss (dB)	Host Loss(dB)	Isola 408HR	Megtron 6	Tachyhon100	
Nominal PCB Loss/in at 5.15 GHz	N/A	N/A	0.65	0.52	0.46	
Nominal PCB Loss/in at 13 GHz	N/A	N/A	1.27	0.98	0.83	
Nominal PCB Loss/in at 27 GHz	N/A	N/A	2.18	1.60	1.28	Beach
10GSFP+ with one connector & HCB*	6.5	5	7.7	9.6	10.9	Inches
28G-VSR with one connector & HCB*	10.5	6.81	5.4	6.9	8.2	Too Short
Cisco Lim proposal adjusted for 28 dB**	11.1	7.1	3.3	4.4	5.5 X	
100G NIC + HCB ***	8	4	1.8	2.5	3.1	
100G C2M by Scaling 28G + connector + HCB***	14.5	10.5	4.8	6.6	8.2	

* Assumes connector loss is 1.69 dB and HCB loss is 2.0 dB at 12.89 GHz

** lim_100GEL_01b_0318.pdf proposal adjusted for 28 dB assuming Cu cable loss is 16.1 dB.

*** Assumes connector loss is 2.0 dB and HCB loss also 2.0 dB at 26.55 GHz.

100GEL Task Force

A. Ghiasi

7

Proposed asymmetric link budget

assumes 28 dB ball-ball

- Cable assembly loss is 16.1 dB —
- Switch PCB loss 10.5 dB _
- NIC PCB loss 4.0 dB ____

To support asymmetric link following test points are introduced

- TP2s and TP3s for switch output/input —
- TP2n and TP3s for NIC output/input. _

C

000000

Option III: Dual Link with Superset Specifications

- Dual link with superset specification allow building Cu/optical ports or build optical/AOC/Active Cu ports if Cu support not required
 - Dual link offer more generous budget for Cu cable
 - With 28 dB ball-ball not guaranteed one could reduce Cu host channel further
- C2M budget is set based on the application needs and independent of the CR ball to ball loss.

Options Moving Forward

Options	Applications Supported	PHY-Less Support on High Radix Switch	Supports 2 m Cu	C2M Applications
I- Symmetric ~ 11 dB	Switch-Switch, and Switch-NIC	No (~half the ports require retimers)	Yes	Penalized by Cu cable use case by forcing retimers on ~ half the ports on a system never using Cu
II- Asymmetric 14.5 dB switch 8.5 dB NIC	Switch-NIC	Yes	Yes	Not penalized by the Cu cable
III- Cu ports 10-11 dB C2M ports 15 dB	Switch-Switch, and Switch-NIC (10-11 dB ports can support both Cu/optics but 15 dB only optics/AOC)	Optional (~half the ports require retimers to support Cu cables but could choose not to support)	Yes (on the 10-11 dB ports)	Not penalized by the Cu cable

Summary

- □ The proposed lim_01b_0318.pdf based on 30 dB need to be adjusted for 28 dB ball to ball loss even further penalizing large ASICs by requiring retimers potentially on half the ports
- This contributions investigates
 - Option I Symmetric based on ~11 dB
 - Option II Asymmetric based on 14.5 dB for switch and 8.0 dB for NIC
 - Option III Dual superset specification based on ~11 dB for CR and 15 dB for C2M
- Each of the above scheme have some pros-cons, but symmetric with ~ 11 dB penalizes every C2M ports by requiring adding many power hungry retiemrs on the linecard where many of these ports will not be using Cu cabling
 - The 100GEL task force need to investigate also option II and option III.