## Chiplet package study

IEEE 802.3 100 Gb/s Electrical Lane Study Group (.ck) ad hoc call May 9, 2018 Brian Holden, VP of Standards Kandou Bus SA



# **Chiplet Technology**

- A trend in IC technology is to more away from monolithic chips toward the use of chiplets tied together on an MCM
- Chiplets allow the:
  - Combination of many dies into large packages
  - Improvement in yield and cost because of a smaller central die(s) a major factor
  - Distribution of heat away from a single die
  - Use of the best semiconductor process for each die
  - Enabling of multi-vendor ecosystems
  - I/O subsystem dies containing SerDes to be placed around the perimeter, creating smaller virtual packages

Big, 70mm packages are routine



Non-interposer MCMs can easily use 20 or more dies plus passives

## **Chiplets in Switches**

- The Ethernet I/O Subsystem including the SerDes can be put on a chiplet
  - Chiplet can have the PCS, FEC and long-reach SerDes and use a fat-pipe packet protocol between devices with a little speed-up factor
  - Raises yield of switch device
  - Use of thin-pipe protocol (i.e. PCS/FEC on main chip) wastes this possible yield gain
  - 1600 Gb/s is one useful chiplet size
  - Switch-to-chiplet link can use a Femto SerDes
    - A chord signaling Femto SerDes is one example
    - Femto SerDes can reach to the corners of a 70 mm package





Detailed package study



## Package analyzed

- 71 mm BGA package analyzed
- 1 mm ball pitch
- 2.5 mm keep-out

|   |               |                   |       | <br>                                        |
|---|---------------|-------------------|-------|---------------------------------------------|
|   |               |                   |       | <br>                                        |
|   |               |                   |       | <br>                                        |
|   |               |                   |       | <br>                                        |
| 1 |               |                   |       | <br>                                        |
| 1 |               | •••••             | ••••• | <br>• • • • • • • • • • • • • • • • • • • • |
|   |               | •••••             | ••••• | <br>                                        |
|   |               | •••••             | ••••• | <br>                                        |
|   |               | • • • • • • • • • | ••••• | <br>                                        |
|   |               | <b></b> .         |       | <br>                                        |
|   |               |                   |       | <br>                                        |
|   |               |                   |       | <br>                                        |
|   |               |                   |       | <br>                                        |
| 1 |               |                   |       | <br>                                        |
|   |               |                   |       | <br>                                        |
|   |               |                   |       | <br>                                        |
| 1 |               |                   |       | <br>                                        |
|   |               |                   |       | <br>                                        |
| 1 | • • • • • • • | •••••             | ••••• | <br>• • • • • • • • • • • • • • • • • • • • |
| 1 | • • • • • • • | •••••             | ••••• | <br>• • • • • • • • • • • • • • • • • • • • |
| 1 |               | • • • • • • • • • |       | <br>                                        |
|   |               | • • • • • • • • • | ••••• | <br>                                        |
|   |               |                   | ••••• | <br>                                        |
|   |               |                   |       | <br>                                        |
| 1 |               |                   |       | <br>                                        |
| 1 |               |                   |       | <br>                                        |
|   |               |                   |       |                                             |
|   |               |                   |       | <br>                                        |
| 1 |               | •••••             |       | <br>                                        |
| 1 |               | •••••             | ••••• | <br>• • • • • • • • • • • • • • • • • • • • |
| 1 |               | •••••             | ••••• | <br>                                        |
|   |               | •••••             | ••••• | <br>                                        |
|   |               | • • • • • • • • • | ••••• | <br>                                        |
|   |               |                   |       | <br>                                        |
|   |               | <b></b> .         |       | <br>                                        |
|   |               |                   |       | <br>                                        |
|   |               |                   |       | <br>                                        |
|   |               |                   |       | <br>                                        |
| 1 |               |                   |       | <br>                                        |
|   |               |                   |       |                                             |
|   |               |                   |       |                                             |
|   |               |                   |       | · · · · · · · · · · · · · · · · · · ·       |
| 1 |               |                   |       | <br>                                        |
|   |               |                   |       | <br>                                        |
| 1 |               | •••••             |       | <br>                                        |
| 1 | • • • • • • • | •••••             | ••••• | <br>• • • • • • • • • • • • • • • • • • • • |
| 1 | • • • • • • • | •••••             | ••••• | <br>                                        |
| 1 |               | • • • • • • • • • | ••••• | <br>                                        |
|   |               | • • • • • • • • • |       | <br>                                        |
|   |               |                   |       | <br>                                        |
|   |               |                   |       | <br>                                        |
| 1 |               |                   |       | <br>                                        |
|   |               |                   |       | <br>                                        |
| 1 |               |                   |       | <br>                                        |
| 1 |               |                   |       | <br>                                        |
| 1 |               |                   |       |                                             |
|   |               |                   |       | <br>                                        |
|   |               |                   |       |                                             |
|   |               |                   |       |                                             |



## 25.6 Tb/s Switch Chip analyzed

• 256 Tx and 256 Rx pairs



## 16 I/O chiplets

- 16 I/O chiplets containing the full I/O subsystem (PCS, FEC, SerDes, FlexE, SyncE, etc.)
- Central switch chip
- CNRZ-5 Femto SerDes connecting the switch chip to the chiplets
  - Fat-pipe packet link with some overspeed
  - Line protocol not yet applied
  - Not protected by link FEC, uses lightweight FEC





# SerDes traces in tight zones

• Package loss constrained by testchip-like package traces





## Short maximum length traces

- Max SerDes trace is about 11 mm
- Max CNRZ-5 trace is about 34 mm





Example Femto SerDes technology Chord signaling







#### Advantages:

- Ideal for shorter connections including die-to-die interconnect inside a package.
- Balanced values on wires reduce SSO Noise and EMI.
- Tolerates common mode noise similar to differential signals.
- Values at slicers are binary.
  - Similar to NRZ signaling
  - ISI Ratio = 1
  - Comparators are self-referencing.



#### 12

## Key Advantage of CNRZ-5 over PAM-4: ISI Ratio

- Inter Symbol Interference Ratio (ISI Ratio):
  - Inherent property of any given code
  - A rough definition is that it is the code's ratio between the largest and smallest eyes at the decision point
- Energy from the larger eyes bleeds over and tends to close the smaller eyes
  - High ISI Ratio codes require more energy to be spent on ISI equalization
  - High ISI Ratio codes are more vulnerable to reflections





CNRZ-5's ISI Ratio = 1

## **OIF & JEDEC**

- OIF: ENRZ, CNRZ-5's cousin code, is a part of the OIF's published CEI 4.0 specification
  - Full Interoperability Agreement at 56
    Gb/s equivalent throughput
- The OIF announced the CEI-112 in MCM project
  - Kandou has been active in this project
- JEDEC: Both ENRZ & CNRZ-5 published in JESD-247





## **IP Disclosure**

- Kandou Bus, S.A. discloses that we own intellectual property related to Chord Signaling and the PHYs described in this contribution.
  - We are committed to adhering to the bylaws of all standards organizations to which we contribute and maintain membership including RAND licensing of our intellectual property.
  - We are committed to being good corporate citizens.



## Thank you!

### **QUESTIONS?**

