Cost, power, size differences of proposed MMF PMDs:
20 m reach un-retimed
vs
100 m reach retimed baseline

May 2013
Jonathan King, Finisar
Ryan Latchman, Mindspeed

Introduction

- 100 m reach MMF PMD baseline
 - 4 lanes, fully retimed, FEC supported
 - 850 nm VCSEL compatible specs
- Proposed 20 m reach MMF PMD
 - 4 lanes, un-retimed, FEC supported
 - 850 nm VCSEL compatible specs
 - (same optics as 100 m reach PMD)
- Main difference is power consumption delta for retiming function on 8 lanes (Tx + Rx lanes)
 - Same optics BOM, PCBA, shell, connectors, much IC functionality in common

Cost

- Same BOM cost for 20 m un-retimed and 100 m retimed modules
 - Test cost for retimed module probably slightly lower than un-retimed module
 - BERT vs high speed oscilloscope measurements
 - Cost of CDRs is negligible
 - CDRs are a small percentage of total IC area

cost difference is small

Power comparison between retimed and un-retimed

Function	Retimed	Unretimed
Amplification (TIA/LA)	Yes	Yes
Equalization (CTLE)	Yes	Yes
VCSEL Laser Driver	Yes	Yes
Host Driver	Yes	Yes
uC and other	Yes	Yes
Clock and data recovery	Yes	No

In Q1'13, how much power did the CDR function consume? < 55 mW/channel Will this go down over time? Yes

Power

• Finisar:

- End of 2011 estimate was ~ 250 mW per CDR IC (including IO and other functionality) (king_01_1111)
- Current 26 Gb/s CDR designs: 100 to 150 mW per CDR for retime function alone (SiGe)
 - 800 to 1200 mW per module
- Expect 50 to 75 mW per CDR for retime function alone in 1 to 2 year time frame
 - 400 to 600 mW per module (SiGe)

Mindspeed

- Current 26 Gb/s CDR design measured less than 55 mW per CDR for the retime function alone
 - < 440 mW per module

Power difference < 0.5 W

CDR power with time

	Q4, 2011	Q2, 2013	~Q4, 2014
А	~250 mW *	100 to 150 mW	50 to 75 mW
В, С		50 to 55 mW	< 50 mW

^{*} king_01_1111

Size

- Same component count for 100 m reach retimed and 20 m reach un-retimed modules
 - Removing CDRs doesn't reduce size of components
 - 4x: VCSELs, drivers, receivers, input/output CTLEs; management functions and
 12C; 8 lane wide electrical connector, optical connector.
 - Both are QSFP+/CFP4 compatible
- Similar power dissipation
 - Retimed 100 m reach module ~ 3 W
 - Un-retimed 20 m reach module ~ 2.5 W ?
 - Both are QSFP+/CFP4 compatible

same BOM + similar power = same size

Conclusions

- By about the same time 802.3bm is technically stable (H2 2014) there will be no significant power, cost, or size, advantage to be gained from an un-retimed short reach PMD.
 - A 20 m reach un-retimed PMD would not meet the criteria for distinct identity.
- The 20 m reach objective is met by the 100 m reach
 PMD, a separate 20 m PMD is not required.

Supporting the conclusions:

Pete Anslow, Ciena Stephen Bates, PMC Sierra

Derek Cassidy, BT

Chris Cole, Finisar

Mark Gustlin, Xilinx

Brian Misek, Avago Tech

Katsuhisa Tawa, SEI

Not supporting the conclusions: