40GBASE-ER4 optical budget proposals

Pete Anslow, Ciena

SMF Ad Hoc, 4 September 2012

Introduction

The Next Generation 40 Gb/s and 100 Gb/s Optical Ethernet Study Group SMF Ad Hoc has received three contributions proposing values for the 40GBASE-ER4 power budget:

```
anslow_01a_0812_smf.pdf
ulrichs_01_0912_smf.pdf
anderson_01_0912_smf.pdf
```

This contribution captures these proposals in one set of tables.

Table 87-9 changes

Table 87–9–40GBASE–LR4 and 40GBASE–ER4 illustrative link power budgets

Parameter	40GBASE- LR4	40GBASE-ER4		anslow_01a_08 12_smf		ulrichs_01_09 12_smf		anderson_01_ 0912_smf		Unit
Power budget (for max TDP)	9.3	(= B+C)		21.6		21.6		21.6		dB
Operating distance	10	(D)	40 a	30	40		40	30	40	km
Channel insertion loss b	6.7	(A)	(B)	16.5	19		19	16.5	18 19	dB
Maximum discrete reflectance	-26			-26				-26		dB
Allocation for penalties ^c (for max TDP)	2.6	(C)		2.6		2.6		2.6		dB
Additional insertion loss allowed	0	(= B-A)	0	2.5	0		0	2.5	0	dB

^a Links longer than (D) km are considered engineered links. Attenuation for such links needs to be less than the worst case for B1.1, B1.3, or B6 a single-mode cabled optical fiber.

^b The channel insertion loss is calculated using the maximum distance specified in Table 87–6 and cabled optical fiber attenuation of 0.47 dB/km at 1264.5 nm plus an allocation for connection and splice loss given in 87.11.2.1.

^cLink penalties are used for link budget calculations. They are not requirements and are not meant to be tested.

Table 87-7 changes

Table 87–7–40GBASE–LR4 and 40GBASE–ER4 transmit characteristics

Parameter	40GBASE-	40GBASE-	anslow_01a	ulrichs_01_	anderson_0	Unit
	LR	<u>ER4</u>	_0812_smf	0912_smf	1_0912_smf	
Signaling rate, each lane (range)	$10.3125 \pm 100 \text{ ppm}$			As LR4	As LR4	GBd
Lane wavelengths (range)	1264.5	to 1277.5				nm
		to 1297.5		As LR4	As LR4	
		to 1317.5				
		to 1337.5				
Side-mode suppression ratio (SMSR), (min)	30		30	30	30	dB
Total average launch power (max)	8.3	(=F+6)		10.5	10.5	dBm
Average launch power, each lane (max)	2.3	$(F \le f(G,L))$		4.5	4.5	dBm
Average launch power, each lane a (min)	– 7	(=H-3)	-1.7	-2.2	-2.7	dBm
Optical Modulation Amplitude (OMA), each lane (max)	3.5	(G)		5.5	5	dBm
Optical Modulation Amplitude (OMA), each lane (min) b	-4	(H=J+TDPmin)	1.3	0.8	0.3	dBm
Difference in launch power between any two lanes	6.5	(I)		4.7	4.7	dB
(OMA) (max)						
Launch power in OMA minus TDP, each lane (min)	-4.8	(J)	0.5	0	-0.5	dBm
Transmitter and dispersion penalty (TDP), each lane	2.6	(K)	2.6	2.6	2.6	dB
(max)						
Average launch power of OFF transmitter, each lane	-30		-30	-30	-30	dBm
(max)						
Extinction ratio (min)	3.5	(L)		5.5	5.5	dB
RIN ₂₀ OMA (max)	-128		-128		-128	dB/Hz
Optical return loss tolerance (max)	20		20	20	20	dB
Transmitter reflectance c (max)	-12		-12	-12	-12	dB
Transmitter eye mask definition {X1, X2, X3, Y1, Y2,	{0.25, 0.4, 0	.45, 0.25, 0.28,		As LR4	As LR4	
Y3}	().4}				

Table 87-7 footnotes

- ^a Average launch power, each lane (min) is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance.
- ^b Even if the TDP < 0.8dB, the OMA (min) must exceed this value.
- ^c Transmitter reflectance is defined looking into the transmitter.

Table 87-8 changes

Table 87–7–40GBASE–LR4 and 40GBASE–ER4 receive characteristics

Parameter	40GBASE-	40GBASE-	anslow_01a_0	ulrichs_01_0	anderson_01	Unit
	LR4	ER4	812_smf	912_smf	_0912_smf	
Signaling rate, each lane (range)	$10.3125 \pm 100 \text{ ppm}$			As LR4	As LR4	GBd
Lane wavelengths (range)	1264.5 t	to 1277.5				nm
		to 1297.5		As LR4	As LR4	
		to 1317.5				
	1324.5 t	to 1337.5				
Damage threshold ^a (min)	3.3	(>F-N+1)	3.8	3.8	3.8	dBm
Average receive power, each lane (max)	2.3	(=F-N)		-1.5	-1.5	dBm
Average receive power, each lane b (min)	-13.7	(=H-3-B)	-20.7	-21.2	-20.7 -21.7	dBm
Receive power, each lane (OMA) (max)	3.5	(=G-N)		-1	-1	dBm
Difference in receive power between any two lanes (OMA)	7.5	(=I+Δ)	$\Delta = 2.3$	7	7	dB
(max)						
Receiver reflectance (max)	-26		-26	-26	-26	dB
Receiver sensitivity (OMA), each lane c (max)	-11.5	(=J-B)	-18.5	-19	-18.5 -19.5	dBm
Receiver 3 dB electrical upper cutoff frequency, each lane (max)	12.3		12.3	12.3	12.3	GHz
Stressed receiver sensitivity (OMA), each lane d (max)	-9.6	(=J-B+M)	-16.3	-16.8	-16.3 -17.3	dBm
Conditions of stressed receiver sensitivity test:			•			
Vertical eye closure penalty, e each lane	1.9	(M)	2.2	2.2	2.2	dB
Stressed eye J2 Jitter, ^e each lane	0.3		0.3	0.3	0.3	UI
Stressed eye J9 Jitter, e each lane	0.47		0.47	0.47	0.47	UI

Table 87-8 footnotes

- ^a The receiver shall be able to tolerate, without damage, continuous exposure to an optical input signal having this average power level
- ^b Average receive power, each lane (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.
- ^c Receiver sensitivity (OMA), each lane (max) is informative.
- ^d Measured with conformance test signal at TP3 (see 87.8.11) for BER = 10^{-12} .
- ^e Vertical eye closure penalty, stressed eye J2 Jitter, and stressed eye J9 Jitter are test conditions for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

Table 87-14 changes

Table 87–14–Fiber optic cabling (channel) characteristics for 40GBASE–LR4

Parameter	40GBASE-LR4	40GBASE-ER4		anslow_01a_08 12_smf		ulrichs_01_091 2_smf		anderson_01_09 12_smf		Unit
Operating distance (max)	10	(=D)	<u>40</u>	30	40		40	30	40	km
Channel insertion loss ^{a, b} (max)	6.7	(=B)		19		19		18 19		dB
Channel insertion loss (min)	0	(N)				7		6		dB
Positive dispersion b (max)	33.5		<u>134</u>	100.5	134			100.5	134	ps/nm
Negative dispersion ^b (min)	-59.5		<u>-238</u>	-178.5	-238			-178.5	-238	ps/nm
DGD_max ^c	10			12				12		ps
Optical return loss (min)	21			21				21		dB

^a These channel insertion loss values include cable, connectors, and splices.

^bOver the wavelength range 1264.5 nm to 1337.5 nm.

^c Differential Group Delay (DGD) is the time difference at reception between the fractions of a pulse that were transmitted in the two principal states of polarization of an optical signal. DGD_max is the maximum differential group delay that the system must tolerate.

Conclusion

Based on the contributions received to date, the power budget for 40GBASE-ER4 baseline seems to be converging.

Thanks!