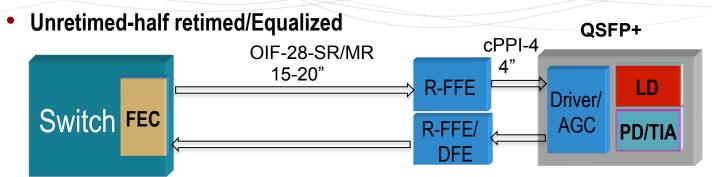
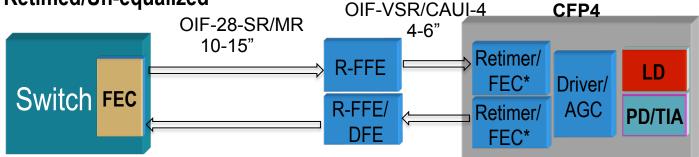


Power and Complexity of 100G-SR4 Implementations

Ali Ghiasi

Jan 23, 2011 IEEE 802.3 100GNGOPTX Study Group Newport Beach


Implication of the Retimed Interface


- 100G-SR4 link performance is dominated by the VCSEL response with about 4 dBo of penalty if no equalizer is used
- The next largest source of penalty is the FR4 PCB trace in case of unretimed interface with about 1.5 dBo of penalty
- Operating the link from B2B to 100 m only adds just ~ 1dBo of penalty
- A retimed interface with FEC will be able to support 50-70 m reach but the this implementation will be:
 - Higher cost
 - Higher power
 - Larger size
 - Higher latency
- The key advantages of retimed interface are the simplified interface and low risk interface.

Common 100G-nR4 Implementations

• Retimed/Un-equalized

- **Retimed/Equalized OIF-VSR/CAUI-4** CFP4 **OIF-28-SR/MR** 4-6" 10-15" Retimer/ **R-FFE** LD FEC* Driver/ Switch FEC R-FFE/ AGC R/FFE/ **PD/TIA** DFF DFE/FEC*
 - In some retimed application if FEC is required but the host does not support it then module must
 - Include FEC which will double the retime PD and not considered in power calculations. IEEE 100GNGOPTX Study Group

PCB Reach Various Standards

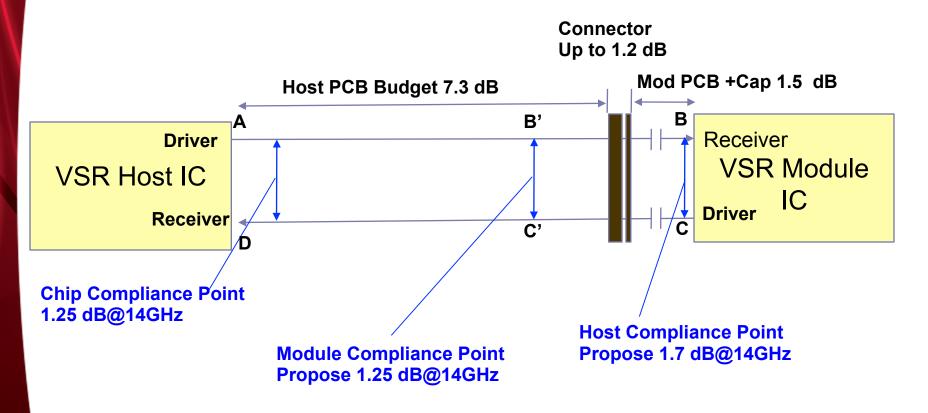
- VSR interfaced in OIF has 10 dB end to end loss budget
- Assuming CAUI-4 has the same loss budget as OIF VSR it means in most applications a Gearbox or 4x25G retimer is placed outside the module
- cPPI-4 tries to take advantage of the retimer in close proximity to the module instead of doubling up retiemrs!

Host Trace Length *	Total Loss (dB)	Host Loss(dB)	FR4-6	N4000-13	N4000-13SI	Megtron 6
Nominal PCB Loss at 28G/in	N/A	N/A	2.0	1.5	1.2	0.9
OIF 28G-LR with two connector	25.5	23.1	11.6	15.4	19.3	25.7
OIF 28G-SR with one connector & HCB	15.4	12.5	6.3	8.3	10.4	13.9
OIF 28G-VSR with one connector & HCB	10	7.3	3.7	4.9	6.1	8.1
cPPI-4 with one connector & HCB	7	4.1	2.1	2.7	3.4	4.6

- Assumes connector loss is 1.2 dB and HCB loss is 1.7 dB this table has not allocated loss for any vias.
- Losses for N4000-13SI and Megtron 6 are in line with 100GCU PCB tool assuming low surface finish http://www.ieee802.org/3/bj/public/tools/kochuparambil_01_1211.pdf

BROADCOM

Highlight of OIF 28G-VSR


- Host transmitter assumes 3 tap FFE with pre and post
- Transmit amplitude of 600 mV
- Host output measured at HCB output with reference CTLE and must meet certain vertical and horizontal opening
- Module transmitter assumes it will deliver certain vertical and horizontal opening at MCB output
- Assume sensitivity at chip ball is 100 mV when measured with software CTLE
- There is no back channel
 - Host will optimize far end eye through reference CTLE by adjusting pre and post
 - The module will utilize its pre/post or peaking filter and faster rise time to deliver min vertical and horizontal opening at TP4 (MCB Output)
- Specification assumes MCB and HCB similar to 802.3ba
- Good starting point for CAUI-4.

A. Ghiasi

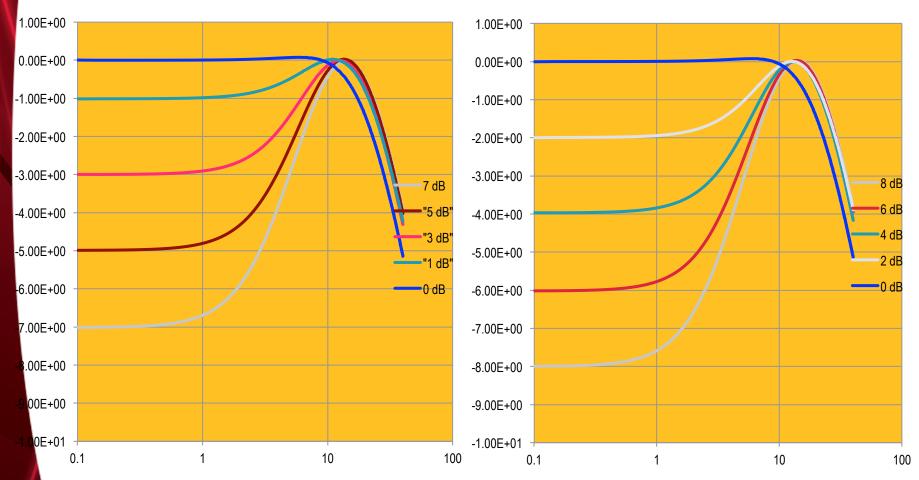
OIF 28G-VSR Architecture and Reference Points

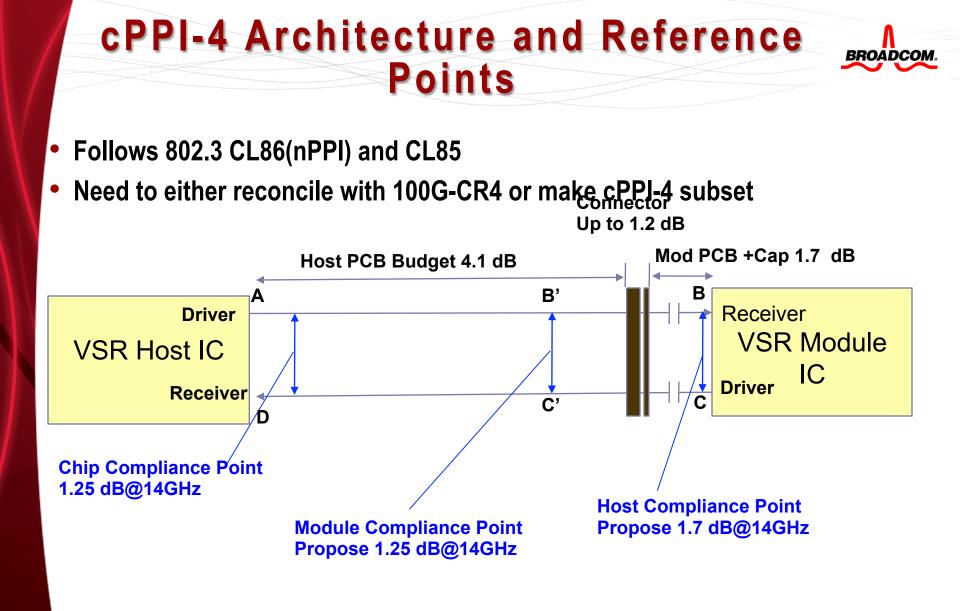
Follows 802.3 CL83B (CAUI)

A. Ghiasi

VSR Channel Loss Budget Table

Assumes 10 dB loss from host IC balls to module IC balls


Traces	FR4-6	N4000-13	N4000-13SI	Megtron 6	
Loss at 14 GHz /in	2.0	1.5	1.2	0.9	
Worst Case Connector loss at 14 GHz	1.2				
Loss allocation for 2 Vias in the channel	0.5				
DC Block	0.5				
Max Module PCB Loss	1.7				
Host PCB Trace Length Assuming 10 dB Loss Budget	3.0500	4.0667	5.0833	6.7778	



OIF VSR Reference Receiver

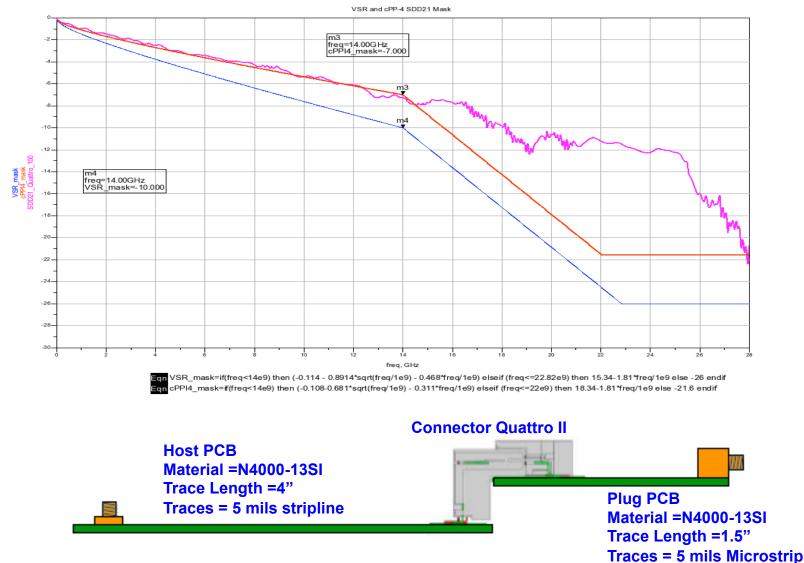
• Is based on a family of 0-8 dB CTLE having two poles and one zero

- Will also submit the same model to be posted under model/channel area

cPPI-4 Proposed Channel Loss Budget

 Attach cPPI-4 with 7 dB loss budget can support unretimed optical PMDs as well as100GCU copper cables

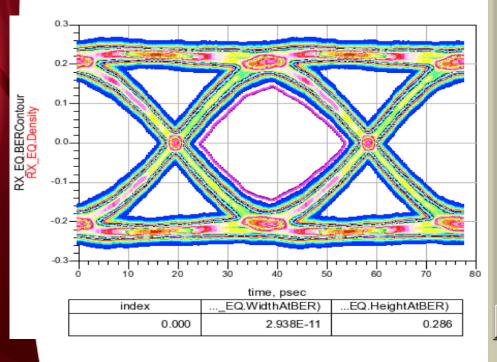
Traces	FR4-6	N4000-13	N4000-13SI	Megtron 6
Nominal Loss at 14 GHz /in	2	1.5	1.2	0.9
Connector loss at 14 GHz*	1.2			
Loss allocation for 2 Vias in the channel	0.5			
Max Module PCB Loss/DC Blocks at 14GHz*	1.7			
PCB Trace Length Assuming 7 dB Loss Budget	1.8000	2.4000	3.0000	4.0000


* For 100 GbE operation since the HCB and connector are specified for operation up to 28GBd there will be 0.2-0.3 dB unallocated margin.

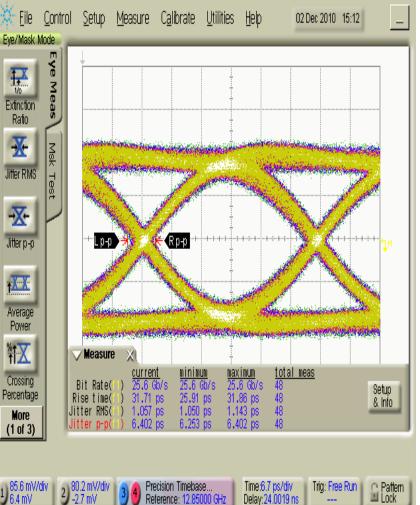
cPPI-4 Channel Based on TE Quattro II


VSR mask also shown

A. Ghiasi

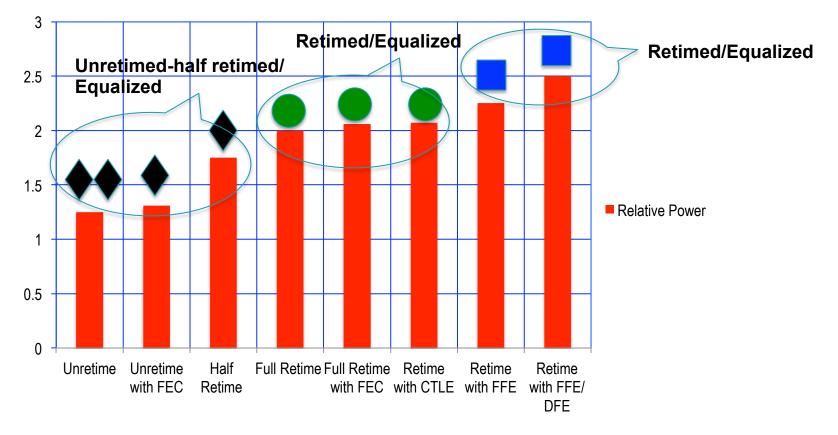


IEEE 100GNGOPTX Study Group


Far End Transmitter Eye

- Channel loss 7.1 dB @14 GHz

A. Ghiasi

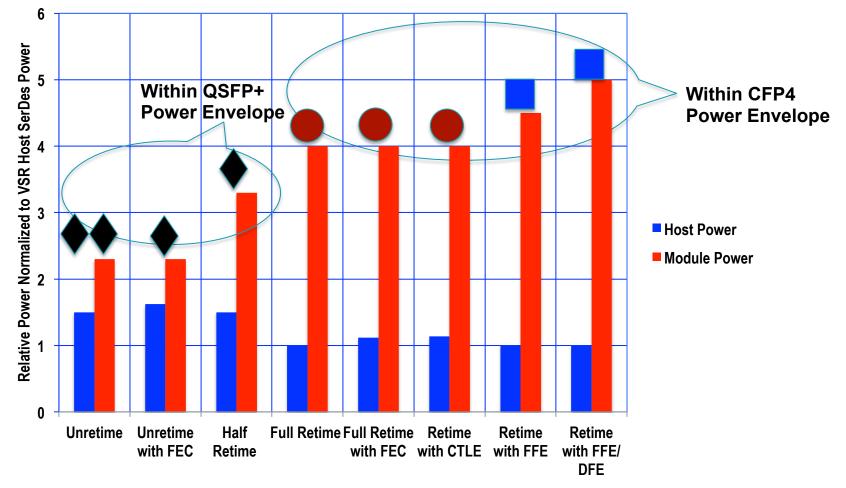

12

BROADCOM

Solution Power Consumption

- Relative power include any host EQ power premium above VSR SerDes
- Alpine ski trail marking is used to show complexity of each solution

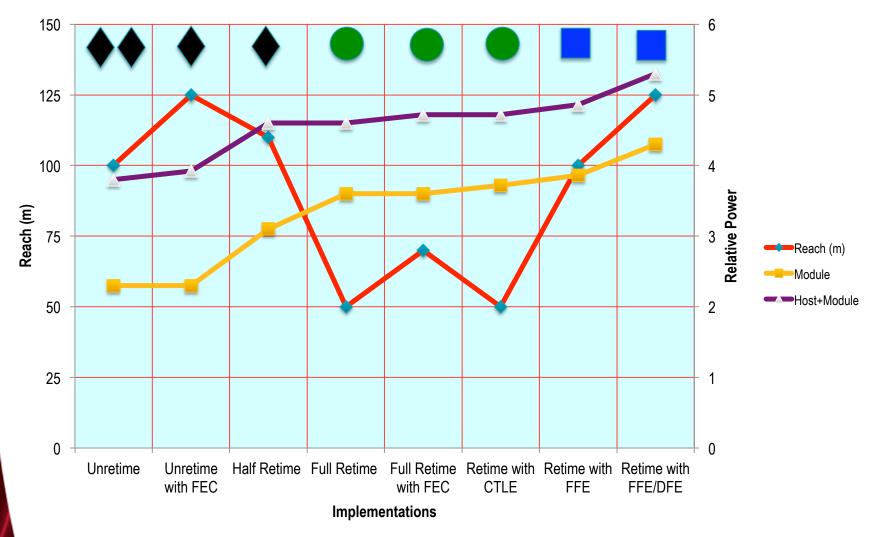
Relative Power of the Optics and the Interface



BROADCOM

Power Comparisons

Relative power include any host EQ power premium



IEEE 100GNGOPTX Study Group

Reach and Host/Module Implementations

Fiber Reach assumes OM3

IEEE 100GNGOPTX Study Group

Summary

- Measured and simulated VCSEL results show feasibility of unretimed cPPI-4 interface based on modest host EQ of 6-T/2 FFE+3 DFE
 - Please see ghiasi_01_0112 and ghiasi_02_0112
 - Host EQ not only makes cPPI-4 feasible but also can address VCSEL slow fall time, Chromatic dispersion, photo detector capacitance, and meet full 100 m on OM3 or 150 on OM4
- Link could operate to full 100 m of OM3 without FEC addressing latency sensitive applications as well
 - Need to quantify the MPN penalty at these longer reach with equalized receiver
- The unretimed 25G link link will have the lowest cost, power, and size as SFP+ has shown at 10G
- Do not see any significant power or cost saving between 30 m vs 70 m retimed solution
- The unretime/half retime are more complex to define and require more focus effort, even if we don't define it in 100GNGOPTX we should take advantage of EQ to facilitate VCSEL/PD impairments and support full 100 m on OM3 or 150 m on OM4.