BROCADE CORNING

## LOW COST 100GBE LINKS

Scott Kipp - Brocade
Doug Coleman - Corning
Steve Swanson - Corning
January 10th, 2012

## Supporters

- Mark Nowell - Cisco
- Tom Palkert - Luxtera
- Chris Bergey - Luxtera
- Mike Peng Li - Altera
- Matt Traverso - Cisco


## Total Cost of Links

- This presentation explores the total cost of links including the connectivity cost (connectors, fiber, and hardware like fanout cassettes) and the module costs
- The connectivity cost has become more significant at 100GbE since we aren't using duplex fiber pairs for all links
- 24 -fiber ribbon connectivity is more costly than 2 duplex fibers, but by how much more?
- The module cost estimates are based on LightCounting data when it is available, but the new variants are not part of their forecasts
- The connectivity cost estimates are based on Corning Cabling System costs
- The costs are estimated for 2014 when these second gen 100GbE systems should be available.


## The Link Model

- The link that we have calculated is based on the double link channel which should be used as worst case and is shown below


## :

MTP to MTP
3 MTP to 2MTP


Converter


Double-link channels

Source: Kolesar_02_0911_NG100GOPTX.pdf

## 3 Link Scenarios



## 3 Scenarios

NR4 is a new SM PMD between 500 m and 2 km . We evaluate two flavors "with WDM" or "no WDM".

PMD
Fiber
Needed

## 100GBASE-SR10 20 <br> 24

WDM
100GBASE-NR4-SM 2
2
with WDM
100GBASE-NR4-PAM 2
100GBASE-LR4 2

8
100GBASE-SR4 ..... 8 ..... 8

8
100GBASE-NR4-SM no ..... 8
100GBASE-NR4-SM
with WDM22

Fibers in the Model


CORNING
Source: Kolesar_02_0911_NG100GOPTX.pdf

## Connectivity Costs in Detail

## Link Cost $=$ Connectivity Cost + Cost of 2 modules

Connectivity cost = hardware cost + (fiber cost/m) * link distance (m)
Hardware cost is constant for a given PMD and the fiber cost varies with the distance of the link that varies from 25 m up to 1000 m where appropriate


The module and hardware cost is fixed for a given PMD

## Model Assumptions

## NR4 is the new SM PMD

| PMD | Max <br> Distance <br> $(\mathrm{m})$ | Fiber <br> Count | Relative <br> Connectivity <br> Cost/Circuit <br> at 100 m | The connectivity <br> values were <br> normalized to this <br> value which is not |
| :--- | :--- | :--- | :--- | :--- |
| the same as the |  |  |  |  |

## Module Assumptions

## Cost Normalized to SR10

| PMD | Max Distance (m) | Relative <br> Module Cost | Range | Slide 11 shows this |
| :---: | :---: | :---: | :---: | :---: |
| 100GBASE-SR10 | 150 | 1 | $1$ |  |
| 100GBASE-SR4 | 100 | 1 | 0.8,1.2. 1.6 |  |
| 100GBASE-NR4 no WDM | 2000 | 5 | 1,3.-6 |  |
| 100GBASE-NR4 with WDM | 2000 | 6 | 5-8 | Slide 13 |
| 100GBASE-LR4-SM CFP2 | 10000 | 25 | 5-25 | shows this |
| 100GBASE-LR4-SM CFP | 10000 | 32 | 15-32 |  |

## Multimode Link Cost Analysis



## Will SR4 only go 100 meters on 0M4?

## Optics is significant cost of link



Distance (meters)
SR4 will likely only go 100 meters if it wants to be cost competitive with SR10 - the previous slide assumes the same cost for SR4 and SR10.

If longer distance is supported in SR4, the cost will likely exceed the cost of SR10 and then we'd have conflicts in what solution is lowest cost depending on distance?

CORNING

## Single-mode Link Cost Analysis



Distance (meters)

## NR4 WDM vs No WDM for 100GBASE-NR4



NR4 no WDM (8 fibers) is assumed to be $20 \%$ less cost than NR4 with WDM (2 fibers). The NR4 no WDM is less cost up to 1000 m .

This line shows where the cost of the link would be when NR4 no WDM is about half the cost of NR4 with WDM or 3X the cost of SR4 modules.

## Link Distributions

## Links are only getting longer

- If SR4 link only goes 100 meters, the market will drive about 12\% of the market to SR10 or single-mode


CORNING
Source: Corning

## The Main Gap That Needs a Solution Links over 150 meters within the data center

- For MM links, the module cost and the connectivity costs are significant because they are close in value and the fiber is expensive
- For SM links, the cost is driven by the module
- Fiber cost doesn't vary much from 2 or 8 fibers but hardware cost does
- The main gap that needs to be filled in this 100G Optics project is the need for a low cost solution beyond 150 meters in the data center
- From the Kolesar Kalculator, $4-15 \%$ of links in 2010 were longer than 150 m
- Between cells Q19 and S20
- By 2015, the percentage of 100GbE links in the data center that go beyond 150 meters will be significant - probably $10 \%$
- We need the following objectives:
- Define a 100 Gb/s PHY for operation over at least 100m of MMF
- Define a $100 \mathrm{~Gb} / \mathrm{s}$ PHY for operation over at least 1 km of SMF


## $\sum$

BROCADE

## Thank You

