

Reliability and Emerging Capabilities of 1060nm VCSELs

A. Kasukawa, Furukawa Electric Company R. Lingle, Jr., OFS

1060nm Wavelength

1060nm VCSELs were first developed for proprietary applications

MMF can be optimized for OM3 / OM4 performance at 1060nm

1060nm wavelength LD (VCSEL) with InGaAs active

Performance

*R.G. Waters et.al., IEEE PTL, 2, pp531-533, 1990

Number of Optical Channels

FURUKAWA ELECTRIC

Speed, power consumption, reliability, and cost become crucial

Inherent Material Merit in 1060nm VCSELs with InGaAs SL-QW

 \checkmark High Speed at high temperature, owing to high material gain

- \checkmark Low power dissipation due to low built-in voltage, high quantum efficiency
- \checkmark High material reliability due to slow dislocation velocity

In-plane lasers with InGaAs active layer <u>Proven "Telecom grade" Reliability</u>

Furukawa electric

Encouraging aging result for highly reliable operation (16-year). Never reported for GaAs-active lasers. Lots of terrestrial and under-sea usage.

Test procedure

High temperature: 70, 90 and 120°C, Bias current: 6 mA Package: commercial 20pin DIP (air ambient; non-hermetic) Failure definition: 2 dB power degradation at 25°C and 6 mA Adopted acceleration factor: Ea = 0.35 eV, n = 0

Condition	Quantity (number of chips)	Maximum aging duration (hours)	Device hours @40°C, 6 mA	Number of failures
70°C, 6 mA	1,075	5,000	8.0 x 10 ⁶	0
90°C, 6 mA	1,121	5,000	1.6 x 10 ⁷	0
120°C, 6 mA	2,702	2,000	5.4 x 10 ⁷	0
Total	4,898		7.8 x 10 ⁷	0

30 FIT/ch with confidence level of 90%

Threshold change

Power change

Eye patterns before and after aging at 120C, 6mA

FURUKAWA ELECTRIC

10Gbps

Eye diagram before aging test

Eye diagram after aging test (5000hrs)

Ib=5mA ER=360mV(ER=6dB)

25Gbps

Eye diagram before aging test

Eye diagram after aging test (2000hrs)

Ib=5mA Vpp=400mV (ER=6dB)

No eye pattern degradation was observed in both for 10Gbps and 25Gbps after long-term aging.

Promising result, comparable to those for 10Gbps was obtained.

One failure was infant failure

- \rightarrow Screening condition was not adjusted for 25Gbps device.

20Gbps transmission over 0M2 MMF using 1060nm VCSEL

Fig. 5: Measured OMA, eye opening, total jitter and extinction ratio as a function of the VCSEL DC bias at 20 Gbps.

20 Gbps optical link with high efficiency 1060 nm VCSEL Jean Benoit Héroux^{*a}, Keishi Takaki^b, Masao Tokunari^a, Shigeru Nakagawa^a Optoelectronic Interconnects and Component Integration X, edited by Alexel L. Glebov, Ray T. Chen, Proc. of SPIE Vol. 79440 - © 2011 SPIE **1060nm VCSELs can provide following features simultaneously:**

- ✓ High Speed data transmission
- \checkmark Low power dissipation
- ✓ High material reliability

Promising candidate for high speed, low power consumption, high reliability. In development for 28 Gbps applications