Reliability and Emerging Capabilities of 1060nm VCSELs

A. Kasukawa, Furukawa Electric Company
R. Lingle, Jr., OFS
1060nm Wavelength

Existing OM2 fiber

1060nm VCSELs were first developed for proprietary applications

MMF can be optimized for OM3 / OM4 performance at 1060nm

Loss
2.1 dB/km
1.2 dB/km
0.9 dB/km

Chromatic dispersion

\[
D(\lambda) = \frac{S_0}{4} \lambda \left(1 - \frac{\lambda^2}{\lambda_0^2}\right)
\]

In here, \(S_0=0.101\) \(\lambda_0=1310\)
1060nm wavelength LD (VCSEL) with InGaAs active

Wavelength (nm)

<table>
<thead>
<tr>
<th>900</th>
<th>1000</th>
<th>1100</th>
<th>1200</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Optical gain increase due to strain effect

DLD growth velocity for GaAs/AlGaAs SQW is much higher than that for InGaAs/GaAs SQW (Especially in high current density)

EBIC image after aging test

*R.G. Waters et al., IEEE PTL, 2, pp531-533, 1990

R.G. Waters et al., IEEE PTL, 2, pp531-533, 1990
Number of Optical Channels

Speed, power consumption, reliability, and cost become crucial.
Inherent Material Merit in 1060nm VCSELs with InGaAs SL-QW

✓ High Speed at high temperature, owing to high material gain
✓ Low power dissipation due to low built-in voltage, high quantum efficiency
✓ High material reliability due to slow dislocation velocity

High Speed characteristics

Power consumption characteristics

In-plane lasers with InGaAs active layer
Proven “Telecom grade” Reliability

E2 passivated 980nm pumps

Encouraging aging result for highly reliable operation (16-year).
Never reported for GaAs-active lasers.
Lots of terrestrial and under-sea usage.
Summary for large scale reliability test

Test procedure
- High temperature: 70, 90 and 120°C, Bias current: 6 mA
- Package: commercial 20pin DIP (air ambient; non-hermetic)
- Failure definition: 2 dB power degradation at 25°C and 6 mA
- Adopted acceleration factor: $E_a = 0.35$ eV, $n = 0$

<table>
<thead>
<tr>
<th>Condition</th>
<th>Quantity (number of chips)</th>
<th>Maximum aging duration (hours)</th>
<th>Device hours @40°C, 6 mA</th>
<th>Number of failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>70°C, 6 mA</td>
<td>1,075</td>
<td>5,000</td>
<td>8.0×10^6</td>
<td>0</td>
</tr>
<tr>
<td>90°C, 6 mA</td>
<td>1,121</td>
<td>5,000</td>
<td>1.6×10^7</td>
<td>0</td>
</tr>
<tr>
<td>120°C, 6 mA</td>
<td>2,702</td>
<td>2,000</td>
<td>5.4×10^7</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>4,898</td>
<td></td>
<td>7.8×10^7</td>
<td>0</td>
</tr>
</tbody>
</table>

30 FIT/ch with confidence level of 90%
Over 20,000h Life test at 70C, 90C (I=6mA)

Threshold change

Power change
No eye pattern degradation was observed in both for 10Gbps and 25Gbps after long-term aging.
Preliminary reliability test

Promising result, comparable to those for 10Gbps was obtained.

One failure was infant failure

→ Screening condition was not adjusted for 25Gbps device.
20Gbps transmission over OM2 MMF using 1060nm VCSEL

Possibility to extremely low power consumption optical link ~1.5mW/Gbps

Fig. 6: Eye patterns after transmission over a 100m OM2 optical fiber

Fig. 5: Measured OMA, eye opening, total jitter and extinction ratio as a function of the VCSEL DC bias at 20 Gbps.

20 Gbps optical link with high efficiency 1060 nm VCSEL

Jean Benoit Héroux*, Keishi Takaki*, Masao Tokunari*, Shigeru Nakagawa*

Conclusions

1060nm VCSELs can provide following features simultaneously:

✓ High Speed data transmission
✓ Low power dissipation
✓ High material reliability

Promising candidate for high speed, low power consumption, high reliability. In development for 28 Gbps applications