The case for a 10dB CAUI-4 Andre Szczepanek & Hamid Rategh

Supporters

- Jon Anderson, Opnext
- Vipul Bhatt, Lightwire
- Chris Cole, Finisar
- Mike Dudek, Qlogic
- Ali Ghiasi, Broadcom
- Mark Gustlin, Xilinx
- Hiroshi Hamano, Fujitsu Labs. Ltd
- Hideki Isono, Fujitsu Optical Components
- Sanjay Kasturia, PLX/Inphi
- Scott Kipp, Brocade
- David Lewis, JDSU

💢 Inphi

- Mike Li, Altera
- Jeff Maki, Juniper
- Arthur Marris, Cadence
- Brian Misek, Avago
- Gary Nicholl, Cisco
- Mark Nowell, Cisco
- Tom Palkert, Luxtera
- Iain Robertson, TI
- Nathan Tracy, TE

10dB channel re-timer capabilities

- Measured results for Inphi's low power 40nm CMOS CDR
- Future trends in re-timers
- The real reach of a 10dB channel budget
- Conclusions

Lab Setup

Thanks to Ishwar Hosagrahar (Inphi) for these Lab Measurements

Test Setup

- Total estimated loss ~12dB
 - (ISI board + GB board (TX + RX) = \sim 7dB + 2x(\sim 2.5dB))

Transmit Near-end Eye @ 28Gbps

Near-End (TPn)

Sampling scope measurements (PRBS31 data pattern)

The case for a 10dB CAUI-4

RX Internal Eyescan and BER (>2.5 min gate)

Re-timer technology for a 10dB channel

- CMOS & SiGe retimers are available for the 10dB VSR channel
 - CTLE only equalization keeps complexity/power down
 - ~2W for a re-timer pair (4 duplex lanes)

CMOS retimers will leverage process improvements

- 28nm and beyond
- Power for a retimer pair (4 duplex lanes) will fall
 - ~20mW/Gbps → ~10mW/Gbps
- This reduction in device power will allow smaller packaging
 - smaller packages, finer ball pitches

Implications of a 10dB Loss Budget

	Worst Case	N4000-13	N4000-13SI	Megtron 4	Megtron 6
loss @ 14 GHz/in	1.7	1.5	1.2	1.175	0.9
Connector loss @ 14 GHz (note 1)	1.2	1.2	1.2	1.2	1.2
Loss allocation for 2 sets of vias in the channel (note 2)	0.5	0.5	0.5	0.5	0.5
Max Module PCB loss (note 3)	1.5	1.5	1.5	1.5	1.5
Host PCB Trace length with 10 dB loss Budget	4.00	4.53	5.67	5.79	7.56

Note 1: The 1.2dB connector loss budget was based on Quattro 1 connector

- Note 2: OIF assumed 0.5dB total via loss (via to layer 9, 10mil stub, 40mil anti-pad, megtron6 has less than 0.08dB loss)
- Note 3: The max trace length in a module may be as short as 4mm using Meg6 in the module with 0.5dB loss for cap results in 0.64dB loss in the module
 - The VSR 10dB loss budget was agreed to support a minimum of 4" host trace
 - Better materials, design practises, and connectors can extend this reach
 - A compliance methodology based on compliance boards facilitates this

Conclusions

- The choice of a 10dB channel budget for OIF-28G-VSR was the result of considerable technical diligence by the VSR working group
 - It allowed the development of low power re-timer chips
- Staying with a 10dB channel will allow development of even lower power & form-factor re-timer chips
 - This is key to "enabling smaller and lower power 100G optical modules".
- Technical and economic feasibility of a 10dB CAUI-4 link is self-evident
- Recommend a Next Gen 100GbE Optical SG objective of :

"Define a retimed 4-lane 100G chip-to-module interface based on OIF-28G-VSR"

