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Basics of PAM-M

• Modulate the 
Optical Tx with M 
level pulse 
Amplitude 
Modulation (PAM)

• 2 bits/symbol for 
PAM-4

• 3bits/symbol for 
PAM-8

• 4 bits/symbol for 
PAM-16
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Rx Error Probability Calculation (1)
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Hence the total error probability is:

d

N(mean, standard deviation) is the standard Gaussian PDF

RMS noise = σσσσ
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Rx Error Probability Calculation (2)
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Now we can express d in terms of the mean electrical signal and the optical 
extinction ratio as follows:

So we can relate the symbol error rate to the mean signal to RMS noise ratio as 
follows:

Where <s> is the mean signal, σ the rms noise and E the linear extinction ratio:

Assumptions: Data is gray coded to make BER equal to symbol error rate / (no bits per symbol)
levels are equally spaced
Noise is independent of signal
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Time Domain Numerical Model

• To investigate the effect of non linearity and other pulse 
distortions it is necessary to do a symbol by symbol numerical 
model. This has been implemented in a Matlab-Simulink like 
environment (Python/SciPy)

• A long data pattern is sampled at eye centre using a CDR 
triggered off the zero crossings of the PAM input signal. The 
M-1 slicing thresholds are distributed evenly between the 
measured Max and Min voltages of the data signal.

• The vector distances between each sample and the M-1 
thresholds are calculated and then the probability of crossing 
the adjacent thresholds due to added Gaussian noise is 
computed. The error probability is then averaged over the 
pattern length
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Numerical Model: Comparison of near Ideal Eye with 
Closed Form Expression for Error rate

SER Numerical Sim vs Ideal Theory
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Rx Dynamic Range Comparison For different PAM 
Schemes

Error rate vs OMA for various PAM Schemes

Based upon existing 25Gb/s TIAs
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PAM-8 THD Penalty from Symmetrical Compression
(Calculated at 10-5 BER sensitivity)
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PAM-8 and PAM-16 Receivers will need strict linearity specifications
PAM-16s small  dynamic range will be further eroded by linearity constraints
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PAM-8 Slice Threshold Optimization for Improved THD Tolerance

(and numerous other impairments)

SNR Penalty vs THD for Optimised Decision Levels
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For lowest SNR giving 10-5 BER.  For details of the algorithm see

Nelder, J.A. and Mead, R. (1965), “A simplex method for function minimization”, The Computer Journal, 7, pp. 308-313 
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As non linearity affects the outer eyes more than the inner ones we should be able 
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Simulated Optimized Decision Levels vs THD

Optimum Decision Levels vs THD
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Convergence of PAM-8 Threshold Optimization

BER Convergence
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– this could be implemented In hardware/firmware.
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PAM8 TX Rise Time Requirements

SNR Penalty vs TX rise time for 25GHz Rx BW
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Rx Bandwidth Simulations
112Gb/s Data

ISI Penalty for Different Rx Bandwidths

for 4pS & 8 pS Tx rise time (10:90) 
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Conclusions

• PAM-16 without FEC  requires a high SNR that is incompatible with practical optical 

receiver overload limits. With FEC the dynamic range is improved but not enough to 
budget for 4dB path loss and 3-4 dB of impairment margin.

• PAM-8 without FEC is similarly too restrictive on dynamic range but PAM-8 with FEC 
seems capable of working with a reasonable loss budget.

• PAM-8 would need to achieve <3% max THD for 1dB optical penalty and PAM-16 

would need <2%. These represent challenging targets particularly given the need to 
operate at high peak-peak photocurrents to maintain adequate SNR.

• Adaptive threshold approaches need to be used to relieved distortion requirements to 
realistic 5% range.

• Operation at 112Gb/s with an 8pS rise time Tx requires Rx bandwidths of the 30-
35GHz. Improvement over current 25G modulator rise times (12pS) will be necessary.

• Further work:
- Model development to establish realistic budget numbers. This must include Tx

imperfections (nonlinearity, phase response) and the Rx CDR & demux plus any 
equalization.

- Dual PAM4 approaches
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Should we consider “dual PAM4”? 

• PAM16
- Simple implementation (no gearbox, simple clocking)

- Optical system does not support the approach

• PAM8
- Optical system can support it but it is challenging (more power,

cost)

- Increased complexity, gearbox required, optical symbol rate is 

higher than electrical bit rate (power, cost)

• “dual PAM4”
- I&Q require coherent receiver

- Dual polarization requires good separation

- Dual laser may be a reasonable compromise
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• Additional Material
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Nonlinearity Shape used in Simulations

• The THD simulations were 

done with a notional cubic 
nonlinearity to produce a 

given THD i.e a transfer 

function of the form:

3)( xxxy α−=

• Where α determines the 
harmonic distortion level. 
The THD can be calculated 
in a simple expression as 
THD=α/(4-3α) for a unit 
amplitude sinusoidal signal. 
Whilst this may be 
convenient for the 
mathematics a better 
description of a real 
hardware nonlinearity may 
be:

)tanh(
1

)( xxy β
β

=

• In this case β determines the 
harmonic distortion. The THD 
level can be calculated 
numerically using a discrete 
fourier transform.

Cubic vs Tanh Nonlinearity

Both nonlinear transfer functions generate 3% THD

for a unit amplitude sinusoidal excitation
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The cubic nonlinearity is a good approximation to realistic hardware

nonlinearities and does not significantly affect the simulated SNR penalty


