100G PAM PMD Observations

Next Generation 100Gb/s Ethernet Optics Study Group IEEE 802.3 Plenary Session Waikoloa, HI 12-15 March 2012 Chris Cole

chris.cole@finisar.com

Outline

- 100G PAM & LR4 Block Diagrams
- 100G PAM & LR4 Cost Comparison
- 40G PAM & LR4 Block Diagrams
- 40G PAM & LR4 Observations
- PAM & LR4 Cost Comparison
- Conclusions
- Appendix: PAM-8 Eyes vs. 20-80% Rise/Fall Time

100G PAM & LR4 Block Diagrams

100G PAM & LR4 Cost Comparison

- Gavrilovic, Nicholl, Nowell, Traverso (nicholl_01_0112, p.5) 100G PAM to LR4 cost ratio: 0.5x to 0.3x
- No objective 100G PAM costs have been presented making independent verification impossible
 - No comparable production 100G TOSA or ROSA exists
 - No Si Mod based transceiver at any rate deployed
- Is there an objective PAM & LR4 cost comparison that can be independently verified?
- Yes! 40G PAM-2 (NRZ) to LR4 transceiver cost comparison
 - Multiple transceiver and component suppliers exist
 - IEEE 802.3 and ITU-T standards exist
 - Multiple transceivers deployed in volume

40G PAM & LR4 Block Diagrams

12-15 March 2012

40G PAM & LR4 Observations

- Comparison is more favorable to PAM at 40G than at 100G
 - 40G LR4 is modestly simpler than 100G LR4
 - 40G PAM-2 is greatly simpler than 100G PAM-8/16
- 40G PAM is in production in the 300-pin SFF form factor (CFP ~size) and is transitioning to CFP
- Planned 40G PAM development efforts will result in significant future cost reduction
- 40G LR4 is in production in the CFP form factor and is transitioning to QSFP+
- Planned 40G LR4 development efforts will result in significant future cost reduction

40G PAM PMD Broad Market Potential

٠

Supporters (and contributors*)

- Andrew Ambrose Alcatel-Lucent
- Rick Rabinovich Alcatel-Lucent
- Stephen Trowbridge Alcatel-Lucent
- Brad Booth AppliedMicro *
- Martin Birk AT&T *
- George Young AT&T *
- Sam Sambasivan ATT Labs *
- Kathleen Tse ATT Labs
- Scott Kipp Brocade
- Sashi Thiagarajan Ciena
- Gary Nicholl Cisco *
- Mark Nowell Cisco *
- Ghani Abbas Ericsson
- Chris Cole Finisar *
- John D'Ambrosia Force10 *
- Joel Goergen Force10
- Hideki Isono Fujitsu
- Kazuyuki Mori Fujitsu
- Ryan Latchman Gennum
- Bikash Koley Google
- Hidehiro Toyoda Hitachi
- Atul Gupta Inphi
- Francis Ho Inphi
- Thananya Baldwin Ixia
- Larry Green Ixia
- Jerry Pepper Ixia

- David Lewis JDSU
- Jeff Maki Juniper
- David Ofelt Juniper
- Brad Turner Juniper
- Hidenori Takahashi KDDI Labs *
- John McDonough NEC-America
- Qiaofeng Jiang, NSN
- Peter Anslow Nortel *
- Osama Ishida NTT
- Jon Anderson Opnext
- Matt Traverso Opnext *
- Christophe Betoule Orange-FT
- Yann Loussouarn Orange-FT
- Erwan Pincemin Orange-FT
- Mike Dudek Qlogic
- Hirotake Iwadate SEDU
- Feng Tian SEDU
- Hirotake Oomori SEI Transmission Devices R&D Laboratories
- Eddie Tsumura SEI Transmission Devices R&D Laboratories
- Farzin Firoozmand Sierra Monolithics
- Song Shang Sierra Monolithics
- Martin Carroll Verizon *
- Frank Chang Vitesse
- George Noh Vitesse

40GE SMF PMD CFI Nov. 2009

40G PAM Mod Trise/fall Requirements

PAM-2 (NRZ) Eye Trise/fall = 14ps (from CFP 40GE-FR DCA eye below)

PAM-8 Eye Trise/fall = 7ps (bhoja_01_0112, p.10, heaton_01_0312, p.11) PAM-16 Eye Trise/fall = 12ps (bhoja_01_0112, p.22, dama_01_0312, p. 4)

40G PAM & LR4 Observations cont.

- 40G PAM transceiver observations
 - Broad market exists
 - Standards based specifications exist
 - PAM-2 TOSAs & ROSAs exist
 - PAM-2 SerDes exist
 - Form factors (CFP, QSFP+) exist
 - Proposed 100G PAM-8/16 Si Mods have the required Trise/fall for 40G PAM-2
 - If 40G PAM to LR4 cost ratio was **0.5x** to **0.3x**, this would result in PAM dominating the 40G client market
- So why is the market not dominated by 40G PAM Si Mod based CFP or QSFP+ transceivers?
- Even with best case assumptions about Si Mod cost, 40G PAM transceiver cost is greater than LR4 cost

PAM & LR4 Cost Comparison

100G CFP2 Blocks	LR4 Cost	PAM Cost	40G CFP Blocks	LR4 Cost	PAM-2 Cost
TX (TOSA)	0.32	0.02 - 0.18	TX (TOSA)	1x	3x
RX (ROSA)	1	0.35	RX (ROSA)	1x	2x
SerDes			SerDes	1x	14x
Misc. (mechanics)			Misc. (mechanics)	1x	1x
Assembly/ Test			Assembly/ Test	1x	1x
TOTAL	0.46	0.13 - 0.23	TOTAL	1x	Зх
100G module cost analysis:			40G module cost analysis: blended		
nicholl_01_0112, page 5			cost of multiple real 40G component		
12-15 March 2012			<u> </u>		

PAM & LR4 Cost Comparison cont.

Historical 40G PAM-2 to LR4 cost comparisons

- Traverso, Mar'08→July'08, projected 2012 ratio: 1x→0.6x (ba/.../traverso_04_0308, traverso_02_0708)
- Cole, Sept'08, projected 2012 ratio: 4x (ba/.../cole_02_0908)
- Current 40G PAM-2 to LR4 cost comparisons
- Cole Mar'12 (previous page) calculated 2012 ratio: 3x
- LightCounting, Dec'11, projected 2012 ratio: 3.3x
 <u>Current 100G PAM-8/16 to LR4 cost comparisons</u>
- Nicholl, Traverso, et al., Jan'12, projected ratio: 0.5x to 0.3x
- 40G to 100G 10x drop of PAM to LR4 ratio is just as improbable as was the 10x in 2 yrs. drop of 40G PAM cost projected in July'08 by PAM proponents

Conclusions

- 100G Si Mod based PAM transceiver cost advantage claims have no verifiable cost data behind them
- 100G Si Mod based PAM transceiver cost advantage claims are not credible as shown by independently verifiable 40G cost data
- 100G PAM cost advantage claims do not justify adopting a new 100G SMF PMD objective
- 40G & 100G DML PIC based LR4 transceivers are the lowest cost solutions for duplex SMF data center applications

Appendix: PAM-8 Eyes vs. Trise/fall

37 GHz 3dB (6.3ps) (using cole_03_0112: 6.5ps)

32 GHz 3dB (7.3ps) (using cole_03_0112: 7.5ps)

Finisar

heaton_01_0312 p.11 (20-80% Trise/fall = .233 / BW)

Appendix: PAM-8 Eyes Trise/fall Analysis

PAM-8 eye: bhoja_01_0112 p.10

Yellow cursors superimposed on the eye to show Trise/fall

This page was added postpresentation to document Q&A discussion

Finisar

12-15 March 2012