Bandwidth Requirements for PAM

John Heaton and Beck Mason
March 2012
Proposed PAM Transceiver Architecture

- Example of digital generation architecture for multilevel modulation
 - Simple single 1310nm EML laser source
 - CMOS IC with quad CDR, FEC encoder, level encoder, and DAC
 - Level encoder and higher resolution DAC enables
 - Digital linearization of modulator transfer function
 - Multilevel coding with non-equal level spacing for optimum SNR performance
 - Digital pre-emphasis and frequency compensation
Challenges and Opportunities

- **Challenges**
 - Nonlinear transfer function of EA
 - Reduced SNR of multi-level coding scheme
 - Increased Bandwidth requirements for high quality PAM encoding

- **Opportunities**
 - Digital linearization of drive signal with DAC
 - Integrated low overhead FEC
 - Transmitter digital pre-emphasis and receiver digital equalization

- This presentation will focus on the transmitter design issues
 - Linearization of EA modulators transfer function
 - EA bandwidth requirements for effective PAM generation
 - Digital pre-emphasis for eye optimization
Typical EA modulator has a voltage to intensity transfer function that is not linear.

Even for a Mach Zehnder modulator the output intensity depends sinusoidally on the phase modulation and so will also need to be linearized using a DAC.
Predicted PAM 8 Eye Diagram for an Electro-Absorption Modulator

- Example PAM 8 eye diagram with nonlinear EA response using linear drive levels

- Wavelength = 1320 nm
- Voltage range = -0.8 V to -3.5 V
DAC on the transmit side enables the voltage drive levels to be tuned to compensate for the EAM transfer function and yield equally spaced output levels.
PAM 8 Optical Eye at 37.375 Gbaud [112.125 Gbit/s]

Predicted PAM 8 Eye Diagram for an Electro-Absorption Modulator

- Wavelength = 1320 nm
- Voltage range = -0.8 V to -3.5 V

- Simulated eye diagram using an 8 bit DAC with a measured DC transfer function from our 25G EML
PAM N Optical Eyes: DAC Resolution - Theory

- PAM 8: 8 bit DAC, 5 bit DAC, 4 bit DAC
- PAM 16: 9 bit DAC, 6 bit DAC, 5 bit DAC
PAM N Optical Eyes: DAC Resolution - Theory

PAM Linearity against DAC Resolution (Effective Number of Bits)

- Deviation from Correct Intensity Level (% of Level separation on a log scale)
- DAC Resolution (Effective Number of Bits)

Graph showing the relationship between DAC resolution and PAM linearity for different levels of deviation.
Summary of Linearization Slides

- A non-linear EAM can be driven with a DAC to generate the equally spaced intensity levels required for PAM N

- The SNR is reduced for multilevel PAM N coding because the eye height is reduced by the factor N-1 compared to on-off keying (OOK)

- To guarantee > 80% eye opening the resolution of the DAC must be at least 4 bits higher than the number of bits represented by the PAM N code
 - 7 bits for PAM 8 and 8 bits for PAM 16

- There is a trade-off between linearity and extinction ratio so that the practical extinction ratio will depend on the resolution of the DAC
PAM 8 Optical Eyes: Frequency Response - Theory

37 GHz 3dB
32 GHz 3dB
25 GHz 3dB
20 GHz 3dB
15 GHz 3dB
10 GHz 3dB
Normalized BW requirements increase for higher order PAM encoding

- PAM 16 requires ~0.8 times the baud rate or 20GHz of bandwidth compared to ~0.6 times the baud rate for OOK data
- PAM 8 is in between and needs ~0.7 times the baud rate for or ~24GHz of bandwidth
PAM 8: Pre-Emphasis with 1x and 2x Oversampling

PAM 8 Original Eye (18 GHz 3 dB)

Pre-Emphasis with 1x Oversampling

Pre-Emphasis with 2x Oversampling
10G PAM 4 Test Setup

- Pulse Generator
- Bias Tee
- Electro-absorption modulated laser (EML)
- DC Power Supply
- Ch 1
- Ch 2
- Scope
10G PAM 4 Electrical Eye
10G PAM 4 Optical Eye - EML
Summary

- For 100 Gbit/s operation PAM 16 has the best eye opening (86%) with the lowest 3 dB roll-off frequency (22 GHz)
 - This is probably because the EAM parameters were optimized for PAM 16

- 100 Gbit/s OOK (PAM 2) has a better eye opening (97%) but at the expense of a much higher 3 dB roll-off frequency (58 GHz)

- 25 Gbit/s OOK (PAM 2) has the best eye opening (>99%) with a 3 dB roll-off frequency of 26 GHz

- The eye opening reduces as the 3 dB frequency reduces - as expected

- The eye opening also reduces slightly as the 3 dB frequency increases
 - Mainly because of more pronounced ringing effects