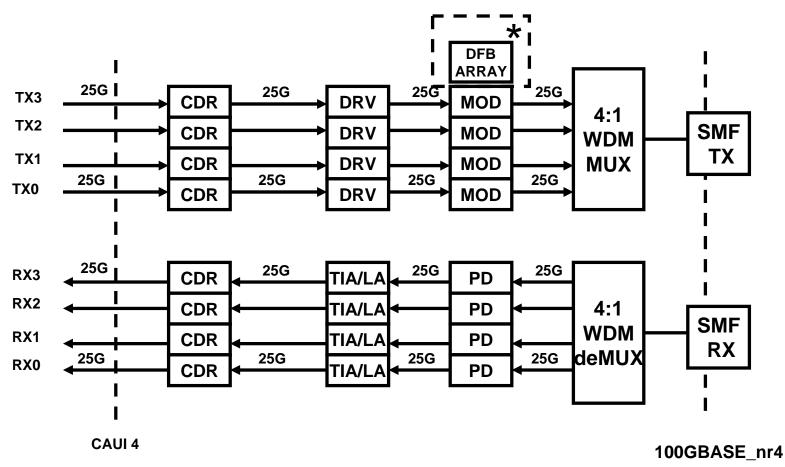


Considerations for WDM NRZ links : CMOS-Integrated Silicon Photonics case

Yurii Vlasov IBM

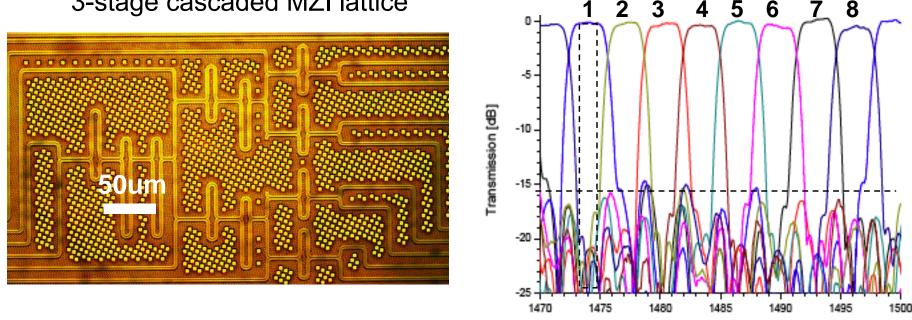


Introduction

- Step function cost reduction is needed nowell_01_1111_NG100GOPTX.pdf
- Cost of SM solution is mostly defined by module cost kipp_01_0112_NG100GOPTX.pdf
- PAM modulation is under consideration bhoja_01_0112_NG100GOPTX.pdf szczepanek_01_0112_NG100GOPTX.pdf
 - Laser is a largest part of module cost
 - PAM modulation is using a single laser
- CMOS-integrated WDM NRZ is considered here
 - LAN WDM, Uncooled, Retimed
 - Link budget 3-4dB
 - Link length 2km

_		-		-
	-			ą
	_	3 6	1	3
_		_	1-1-	
		2	1 7 1	

Single-die WDM NRZ block diagram


- * DFB Array is a single die containing 4 DC DFB lasers
- * Other implementations possible

Technical feasibility

Example: 8 channel WDM at 1490nm lacksquare

3-stage cascaded MZI lattice

No add-on charges: same mask and same processing as CMOS FETs •High yield and uniformity \rightarrow passive filtering – no active tuning required

4 channel LAN WDM at 1310nm is an easier task

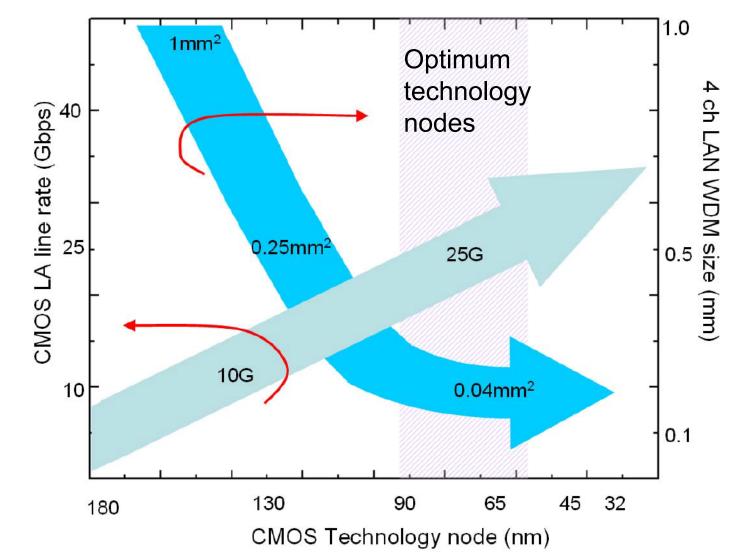
Wavelength [nm]

Scaling of CMOS-integrated Photonics

Scaling of Photonics

First technology node that can yield product-stable passive WDM is **the best**

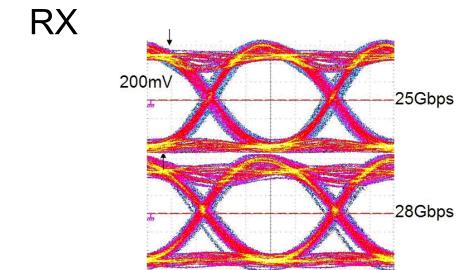
- 193nm lithography can control the LER (line edge roughness) variation within 9 nm (3σ)
- Diffraction-limited scaled LAN WDM can be yielded by process control
- No need to individually tune phase delays to compensate for fabrication-induced phase errors
- Further scaling to advanced CMOS nodes would allow to control LER much better, however will nto decrease the size of the WDM


Scaling of CMOS-integrated Photonics

Scaling of CMOS AMS circuits

First technology node that can yield product-stable 25/28Gbps AMS circuits including drivers, amps, CDR, etc. is <u>the best</u>

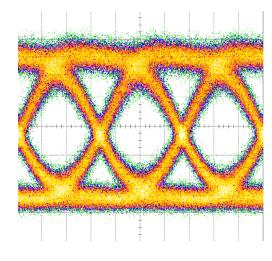
- Advanced CMOS nodes will have higher bandwidth
- However scaling of AMS circuits is not following the same trend as digital scaling: much less power and area savings
- Significantly increased NRE, mask/step charges for advanced nodes


Choice of CMOS technology node

IEEE Comm. Mag. , February 2012, Y.Vlasov "Si nanophotonics for Computercom beyond 100G"

7

Feasibility demonstrations



Measured 3.5pJ/bit @28Gbps

4ch@25Gbps = 350mW

Error-free (10⁻¹² BER) up to 40Gbps

• TX

Ring modulator measured 100fJ/bit@25Gbps Modulator driver measured 2pJ/bit@25Gbps 4ch@25Gbps = 200mW

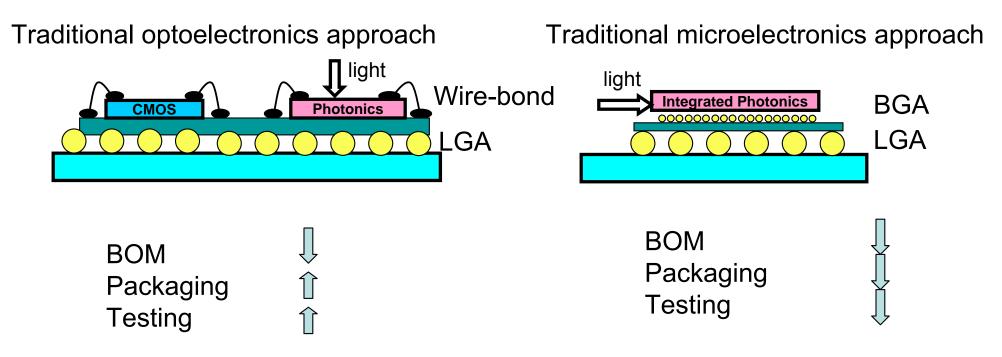
Considerations for cost analysis

- Optical module cost analysis must include:
 - BOM (number / cost of components)
 - Assembly/packaging cost
 - Testing
- BOM for WDM CMOS transceiver
 - WDM CMOS Transceiver die *
 - InP laser array die
 - Fiber connector interface
 - Laminate

9

1 (area 5x5mm²)

1 (area 1x0.5mm²)


1 1

* Trivia: Integration of multiple optical and electrical components into a single CMOS die significantly decrease cost

Packaging and Testing

 Implementation of WDM transceiver in CMOS allows to utilize <u>packaging</u> practices of microelectronics industry

- Implementation of WDM transceiver in CMOS allows to utilize <u>testing</u> practices of microelectronics industry
 - Wafer-scale testing in the middle of CMOS line
 - Wafer-scale system test at the end of CMOS line
 - Module test after packaging of best-known die

Considerations on WDM uncooled operation

- LAN WDM with flat-top
 - Operation within 40°C pp
- DC DFB laser

11

- Usual temperature constraints for 25Gbps DML DFB are not very relevant for DC DFB
- Main concern for DC DFB:
 - Variation of slope efficiency
 - Variation of laser wavelength
- Both can be addressed by on-chip track-and-lock control circuitry
- Case temperature control vs die temperature control

Summary

- WDM NRZ CMOS-integrated single-chip TRX solution is considered
- Presented considerations on cost reductions looks promising
- Rigorous RCA analysis is required
- Feasibility requires further investigation