Performance Studies of 100 Gigabit Ethernet Enabled by Advanced Modulation Formats

Jinlong Wei, Jonathan D. Ingham, Richard V. Penty and Ian H. White

E-mails: {jw748, jdi21, rvp11, ihw3}@cam.ac.uk

Thank you to David Cunningham for useful discussions and advice

Outline

Background

□ Part I: Simulation Evaluation

□ System Descriptions and Parameters

Link Power Budgets

Power Dissipation

□ Part II: Experimental Demonstration

Next Gen 100 Gigabit Ethernet with a Single Channel

□ IEEE 802.3 NG 100 Gigabit Ethernet PMD study group proposed PAM

- Single-laser 100 Gigabit Ethernet
- FEC is incorporated
- Use of MZ modulator is considered
- U We have developed a full simulation tool to evaluate various 100 Gb/s systems
 - In addition to PAM, we have investigated performance for NRZ, CAP and optical OFDM
 - In addition to MZ modulators, directly-modulated lasers (DMLs) are also considered
 - FEC is included
- □ We have experimentally demonstrated CAP
 - CAP is implemented without using DAC/ADC, providing high power-efficiency
- □ Work reported in this presentation
 - Theoretical evaluation and comparison of link power budgets of NRZ, PAM, CAP and OOFDM
 - Power dissipation evaluation and comparisons between NRZ, CAP and OOFDM to demonstrate the potential of high power-efficiency for CAP
 - Experimental demonstration of CAP

Reference 28 Gb/s NRZ System Parameters

Component	Parameter	Value		
Laser	Туре	Gaussian response or rate equations		
	Wavelength	1300 nm		
	Rise time	12 ps (20% to 80%), i.e., 18.6 GHz 3-dB BW		
SMF	Minimum dispersion λ	1324 nm		
	Laser centre wavelength	1295 nm		
	Dispersion slope	0.093 ps/km/nm ²		
	Length	500 m to 2 km		
Receiver	Filter type	4 th -order Bessel-Thomson		
	Cut-off frequency	21.038 GHz		
	Responsivity	0.9 A/W		
	Sensitivity	-10 dBm (@ BER = 10 ⁻¹²)		

- □ The parameters are based on what might be needed for a SMF 32GFC proposal
- □ PMD and DGD are ignored for 500 m to 2 km SMF links
- □ The above components and corresponding parameters are used for various 100 Gb/s multilevel systems for comparisons

100 Gb/s System Architecture with a Single Channel

 P/S: parallel to serial conversion
 B/S: bit to symbol mapping
 DAC: digital to analog convertor

 DML: Directly modulated laser
 MZM: Mach-Zehnder modulator
 PD: photo-detector

 FFE: feedforward equalizer
 DFE: decision feedback equalizer

FEC: forward error correction P/S: parallel to serial conversion CP: cyclic prefix Sync.: Synchronization PD: photo-detector (I)FFT: (inverse) fast Fourier transform DAC/ADC: digital to analog/analog to digital conversion

QAM-16-OFDM or QAM-64-OFDM

- Digital implementation is considered using DAC/ADC for all systems
- □ The CAP shaping filters are based on square-root raisedcosine (RRC) pulse shaping
- FEC and equalisation are necessary for the 100 Gb/s single-channel systems
- PAM systems can be obtained by simplifying the CAP system shown
 - Only In-phase component included
 - RRC shaping filters are replaced with rectangular shaping filters
 - NRZ is equivalent to PAM-2

100 Gb/s System Parameters

	NRZ	PAM-4	PAM-8	CAP-16	CAP-64	QAM-16- OFDM	QAM-64- OFDM
Bit rate (Gb/s)	100	100	100	100	100	100.3	100.3
Symbol rate (Gbaud)	100	50	33.3	25	16.7		
SE (b/s/Hz)	1	2	3	4	6	3.65	5.47
DML model type*	1	1	1	2	2	2	2

*Type 1 refers to a rate equation model and Type 2 refers to a Gaussian model

- Rule of Thumb: When the bandwidth of the DML transmitter (~18.6 GHz) is less than about 0.5 of the baud rate, DML nonlinearity has to be considered by using rate equations (Type 1); otherwise a simple Gaussian model (Type 2) can be used
- **U** Note that laser nonlinearity can be ignored for all of the coding schemes when MZ modulators are used

□ Trade-offs between DAC/ADC sampling rate and link power budget determine the choice of the order of multilevel modulation schemes

- Higher DAC/ADC sampling rate allows lower-order multilevel modulation, giving rise to lower multilevel penalties
- ✓ On the other hand, higher signal bandwidth means stronger ISI due to limited system bandwidth

Power Budget Constituents for Various 100 Gb/s Systems

 The power penalty due to reflection, jitter etc. can be obtained from a presentation to the IEEE 802.3 NG 100 Gigabit Ethernet study group^[1]

[1] S. Bhoja, "Study of PAM modulation for 100GE over a single laser," Jan 23-27, 2012.

Laser Models

Laser Model 1: Rate equations^[1]

- Based on a lumped DFB model with rate equations taking into account nonlinearities^[1]
- □ The 3-dB BW is approximately 17 GHz @ a bias current of 50 mA

[1] J.M. Tang, et al, J. Lightwav. Technol., vol. 24 no. 1, 2006

Laser Model 2: Gaussian response

- □ The 3-dB BW is approximately 18.6 GHz
- Laser nonlinearity is not considered, indicating that the DML induced distortion can be compensated by the receiver equalisation

Reference 28 Gb/s NRZ System Using both Laser Models

- Sensitivity is -10 dBm @ BER = 10^{-12}
- The DML nonlinearity causes a power penalty of ~0.3 dB @ BER = 10⁻¹², indicating DML model 2 can be used.
- Similar DML nonlinearity penalty of < 1 dB is also observed in 100 Gb/s CAP-16/CAP-64 and QAM-16-OFDM/QAM-64-OFDM

100 Gb/s NRZ System using both Laser Models

20 taps T/4 spaced FFE +3 taps DFE and 2km SMF

- The difference in terms of system power budget is huge
- The DML nonlinearity is significant and 100 Gb/s NRZ fails as the power budget does not satisfy the requirement
- Verifies the rules of thumb

100 Gb/s PAM Systems using both Laser Models

- Similarly to NRZ, PAM-4 and PAM-8 also fail when taking into account DML nonlinearity
- Verifies the rules of thumb
- CAP and OOFDM are the only survivors if using DMLs
- By default, for DML case, Laser Model 1 is used in NRZ and PAM systems and Laser Model 2 is used for CAP and OOFDM systems. For MZM case, Laser Model 2 is used for all schemes

20 taps T/4 spaced FFE + 3 taps DFE and 2 km SMF

Link Power Budget Performance using DMLs and FEC(10⁻³, 10⁻¹²)

□ FEC(10⁻³, 10⁻¹²) means that a BER of 10⁻¹² is achievable given that the input BER is 10⁻³

□ The total link power budget is 13.7 dB

D: FFE-DFE containing 20 taps T/4 spaced FFE and 3 taps DFE

Link Power Budget Performance using DMLs and FEC(10⁻⁵, 10⁻¹⁵)

- FEC(10⁻⁵, 10⁻¹⁵) means that a BER of 10⁻¹⁵ is achievable given that the input BER is 10⁻⁵
- □ Total link power budget is 12.3 dB
- D: FFE-DFE containing 20 taps T/4 spaced FFE and 3 taps DFE

Link power budget performance using *MZMs* and FEC(10⁻³, 10⁻¹²)

- □ Laser Model 2 is used for all modulation formats
- □ The nonlinear P-I curve of MZM can be compensated by unequal symbol mapping^[1], thus is ignored
- □ The total link power budget is 13.7 dB
- D: FFE-DFE containing 20 taps T/4 spaced FFE and 3 taps DFE

Ref [1] G. Nicholl, et al, "Update on technical feasibility for PAM modulation" IEEE 802.3 NG 100GE PMD study group, Mar. 2012

Link Power Budget Performance using MZMs and FEC(10⁻⁵, 10⁻¹⁵)

Laser Model 2 is used for all modulation formats

Total link power budget is 12.3 dB

D: FFE-DFE containing 20 taps T/4 spaced FFE and 3 taps DFE

The Effect of FFE Tap Spacing and Tap Count on System Performance

- FFE tap spacing of T/4, T/2 and T are considered and MZMs with 2 km SMF are used for all systems
- The achievable power margin decreases with increasing tap spacing
- □ There is trade off between achievable power margin and Rx signal oversampling required

- FFE tap spacing of T/2 is considered here and MZMs with 2 km SMF are used for all systems
- There is an optimum FFE tap count beyond which the optical power budget does not improve

Estimated Power Dissipation for Systems using MZMs

	PAM-4	PAM-8	CAP-16	CAP-64	QAM-16-OFDM
DAC/ADC (GS/s)	100	66.7	75 *	50 *	55

* The Nyquist sampling rate given by 2*(1+roll_off_factor)*symbol_rate, with roll_off_factor being 0.5

- D Power dissipation estimation is based on 65 nm CMOS technology
- □ The power dissipations of PAM, CAP and OFDM transceivers are dominated by the DAC/ADC
 - ✓ For example, for CAP-16 (16-QAM-OFDM) with a single-channel configuration, the DAC/ADC power consumption accounts for 55% (48%) of that for the overall transceiver
- DAC/ADC power dissipation is extrapolated from Fujitsu 55G-65G DAC and 56G ADC product sheets^[1], and the assumption is made that its power consumption is linearly dependent on the sampling rate
- CAP implemented without DAC/ADC consumes less power than a 4×25 Gb/s NRZ 100 Gigabit Ethernet system, indicating great potential for high power-efficiency

Potential Lower Power Dissipation for DAC/ADC

Source: Kenn Liu, Hui, "Enable 100G- Key Technology for 100G Transport Network ASIC", ICCAD2010. available at <u>http://www.slideshare.net/kennliu/fujitsu-iccad-presentationenable-100g?from=share_email</u>

- The power consumption for ADC is almost halved using 40 nm CMOS technology compared to 65 nm CMOS
- Further reduction of power dissipation of the proposed systems is predictable
 - For example, when 20 nm CMOS technology is used, the power dissipation for a CAP-16 transceiver is close to that of a 4 × 25Gb/s NRZ 100 Gigabit Ethernet system

Experimental Studies of CAP-16

Two approaches considered:

- 40 Gb/s CAP-16 using integrated transversal filters for encoding and decoding
- 50 Gb/s CAP-16 using integrated XOR gate for encoding and discrete transversal filter for decoding

40 Gb/s CAP-16 – Experimental Arrangement

40 Gb/s CAP-16 - Encoding

Integrated transversal filter with tap spacing ≈ 25 ps (≈ 5 taps required)

Good agreement with simulated pulse shapes

40 Gb/s CAP-16 - Decoding

After 10 km SMF transmission, the 4-level decoded eye diagrams have Q factors: 6.2, 6.1 and 6.4 (in-phase channel) 3.0, 4.1 and 3.5 (quadrature channel)

50 Gb/s CAP-16 – Experimental Arrangement

Discrete transversal filter (3 taps) constructed for decoding

12.5 GHz clocks applied to XOR gates with 90° phase shift between I and Q clocks

50 Gb/s CAP-16 - Encoding

XOR gate used for encoding of $2^7 - 1$ PRBS

In-phase channel

16 ps/div

Quadrature channel

16 ps/div

50 Gb/s CAP-16 - Decoding

5 km SMF

16 ps/div

In phase channel

16 ps/div

After 5 km SMF transmission, the 4-level decoded eye diagrams have *Q* factors: 4.0, 3.9 and 4.3 (in-phase channel) 3.8, 4.0 and 4.0 (quadrature channel)

Conclusions

- We have established a full simulation tool to evaluate the performance of various 100 Gigabit Ethernet coding schemes
- We have theoretically demonstrated the feasibility of 100 Gigabit Ethernet PMDs enabled by NRZ, PAM-4, PAM-8, CAP-16, CAP-64 and QAM-16-OFDM over a single optical channel using MZM and FEC. The feasibility of using DML for FEC-aided CAP-16 and QAM-16-OFDM has also been explored
- □ Energy consumption aspects have also been considered
- We have also experimentally demonstrated CAP systems at data rates up to 50 Gb/s using both transversal-filter encoding and XOR encoding

Issues to Be Investigated in Future

- The system power penalties due to the following mechanisms have not been considered, but will be in future studies
 - Baseline wander
 - Reflection-induced interferometric noise
 - The dependence of jitter penalty on modulation format