Multiple reflected MPI analysis for 100G-PAM8 Transmission

Taichi Kogure, Opnext Kiyo Hiramoto, Opnext Jon Anderson, Opnext

Next Generation 40Gb/s and 100Gb/s Optical Ethernet Study Group, Minneapolis, May 2012

Overview

- Using photonic simulation tool, *VPItransmissionMaker™*, a further multiple reflected MPI analysis is carried out.
- A transmitter model for PAM-8 modulation with equal OMA symbols, A BERT model for PAM-8 based on Gaussian distributed histogram and 2 types of MPI emulator models, are introduced to calculate a PAM-8 transmission performance.

SMF-Link Model for 100G-PAM8

Assumption: Patch panel and plenum cable have a same fibre length, respectively.

Simulation model (VPI) for PAM8 system

- 1. Three parallel Pulse Pattern Generators generate each independent PRBS pattern (2⁷-1).
- 2. TX model is based on "nicholl_01b_0312," with taking extinction ratio into account.
- 3. MPI Emulator is created with a similar concept shown in "nicholl_01b_0312."
- 4. Receiver model is a default model, Rx_OOK.vtmg, from VPI.
- 5. Bit converter sort out symbol-by-symbol integers of PAM level and use as a reference.
- 6. PAM-8 BERT calculate bit error ratio using the formulas, erfc() in "nicholl_01b_0312."

MPI emulator modeling

All 15 reflected signals are combined with a direct signal.

Both delay and attenuation elements are set to the specified values, and all phase offset elements are set to 90 degrees (the largest Link RIN noise) as the worst case calculation.

Both delay and attenuation elements are set to the specified values, but each phase difference from direct path is set as depending on a combination of 5 different random values.

Link RIN penalty: Model #1

* N/A: BER curve shows error floor (> 1e-5)

Link RIN penalty: Model #2

* N/A: BER curve shows error floor (> 1e-5)

-0.05

-0.05

Summary

- A power penalty due to multiple reflected MPI is calculated by Monte Carlo approach with VPI.
- 2 types of MPI model are introduced.
- Results indicate as follows;
 - Penalty depends on a linewidth of laser source, same result as previous Link-RIN analysis (kogure_01_0312).
 - In order to use DFB-LD source with conventional spectral linewidth (~10 MHz), MDI and Link connection reflectance should be, at least, <30 dB.

Thank you!

Appendix

Parameter List of Simulation

Parameters		Value	Units	Remarks
Wavelength	Тх	1309.14	nm	Frequency: 229.0 THz
Spectral width	Тх	0, 1, 2, 4, 10	MHz	
Base Extinction ratio	Тх	6.0	dB	Between highest and lowest
Source RIN	Тх	-149	dB/Hz	
SMSR	Тх	50	dB	100 GHz shifted from main mode
Tx Rise/Fall time	Тх	6.3	ps	20/80%, 9.5 ps (10/90%)
Responsivity	Rx	0.8	A/W	
Rx bandwidth	Rx	32.0	GHz	w/ 4 th Bessel filter
Input referred noise	Rx	25	pA/sqrt(Hz)	Dark current: 100pA (negligible)
Symbol rate	Link	37.3	Gbaud	
Link length	Link	50 & 500	m	Refractive index: 1.47, no fiber model
Reflectance	Link	-20 to -40	dB	Including MDI
Phase difference	Link	0 to 90	deg	Randomized, or Fixed at 90 deg
State of Polarization	Link	same as Tx	-	All reflected signals have the same SOP
Data pattern	Link	PRBS 27-1	-	Sequence is randomized, 20 times

Tx Rise/Fall time

PAM8 BERT w/ Gaussian distributed histogram

- SER calculation is based on Gaussian distributed histogram with only adjacent PAM levels.
- BER calculation is accumulated all SER with 1/{(M-1)*log₂M} correction.
- Mean and standard deviation of each PAM level are collected and calculated.
- The decision threshold of each symbol is optimized to minimize its SER.

MPI Emulator Model #1 (VPI Galaxy)

All 15 paths provide specific delay time and attenuation related to its double reflection, and all phase differences from the direct path are 90 degree.

MPI Emulator Model #2 (VPI Galaxy)

All 15 paths provide specific delay time and attenuation related to its double reflection, but phase differences from the direct path depend on 5 random phases caused by each deterministic reflection.

Phase setting for MPI Emulator Model #3

kogure_01_0512

PAM-8 Eye Pattern & Optical Spectrum

100G-PAM8 Eye pattern (Symbol rate: 37.3 Gbaud) 100G-PAM8 Optical Spectrum (Symbol rate: 37.3 Gbaud) (OSA resolution: minimum ~5 MHz)