Cabling Cost-Centroid Lengths for Simplified Total Cost Comparisons

Paul Kolesar
CommScope

May, 2012
IEEE 802.3 Next Gen 40G and 100G Optics Study Group

Purpose and Approach*

- To provide a cabling cost metric that:
- Allows a simplified view of total channel cost (cabling + 2 PMDs)
- Facilitates comparisons of SM PMD alternatives
- Accommodates different cabling infrastructures (e.g. 2-f vs 8-lane)
- Accommodates various complementary MM PMD scenarios
- Avoids misapplication of cost-parity lengths for total cost comparisons
- Examine channel cost and length distributions of "Kolesar Kalculator" to determine new cost metric:
- Cost-Centroid Length

[^0]
Definition

- Cost-Centroid Length (CCL)
- The length of a cabling channel that has a cost which is equivalent to the length-distribution-weighted cost of all channels, or a range of channels, of a topology

Or stated more simply

- The channel length that is representative in cost to the channels of a topology

Cost-Centroid Length Calculation

Overall
= Cabling Cost (OCC) for each topology and construction

OCC - Fixed Costs (e.g. patch panels \& testing) [\$]
Length-Dependent Cost Rate (e.g. cable \& cable installation) [$\$ / \mathrm{m}]$

Why Use Cost-Centroid Length?

- Use of other metrics, like Cost-Parity Length (CPL), is fundamentally flawed for total cost comparisons
- CPL is the length where the cost advantage shifts between two PMDs for a single channel
- But CPL does not account for channel PDF weighting on total deployment costs
- CCL does account for channel PDF weighting and represents the correct length to use for total cost comparisons
- CCL can be adjusted to account for different deployment assumptions (e.g. the effect of MM PMD usage)

Note: PMD-A and PMD-B only for illustration

Cost-Centroid Lengths (CCLs) [m]

Length Selection	Server-to-Switch Channels		Switch-to-Switch Channels		
	Post- 2012	Pre- 2008	Single Link	2:1 Mix Link	Double Link
All Lengths	16	24	59	75	106
$>100 \mathrm{~m}$	n.a.	n.a.	148 Propose to use 150 for all		
$>150 \mathrm{~m}$	n.a.	n.a.	192 Propose to use 200 for all		

n.a. $=$ not applicable. No length distribution within length selection.

Graphically Depicted CCLs

Data Center Channel Length CDFs and Cost Centroid Lengths for Channels > $\mathbf{0} \mathbf{~ m}$

0\%

Length (m)
Note: cost-centroid lengths are in the 65 - 70\% range for Sw-to-Sw CDFs

Utility of Length-Selected Centroids

Length Selection	Server-to-Switch Channels		Switch-to-Switch Channels		
	$\begin{aligned} & \text { Post- } \\ & 2012 \end{aligned}$	$\begin{aligned} & \text { Pre- } \\ & 2008 \end{aligned}$	Single Link	2:1 Mix Link	Double Link
All Lengths	16	24	59	75	106
> 100 m	n.a.	n.a.	150	150	150
$=150 \mathrm{~m}$	n.a.	n.a.	200	200	200

- Use "All Lengths" values for cost models in which SM PMDs will be used for all channels
- Customer deploys only SM solutions
- Use "> 100m" values for cost models in which

SM PMDs will be used only for channels exceeding 100 m

- Customer deploys MM PMDs up to 100 m capability
- Use "> 150m" values for cost models in which

SM PMDs will be used only for channels exceeding 150 m

- Customer deploys MM PMDs up to 150m capability

Example Usage

- Compare total channel cost (cabling + 2 PMDs) for two SM PMD types:
- LR4 with relative cost $=2 \mathrm{~K} \times$ ($100 \mathrm{~m} 2-\mathrm{f}$ OS2 single-link cabling end-user cost)
- PSM4 with relative cost $=\mathrm{K} \times$ (100m 2-f OS2 single-link cabling end-user cost)
- K units: [PSM4 end-user cost / 100m 2-f OS2 single-link cabling end-user cost]
- LR4 operates on 2-fiber cabling, PSM4 operates on 8-lane cabling
- Assume MM PMD is used to 150 m , so " $>150 \mathrm{~m}$ " CCL values apply
- CCL $=200 \mathrm{~m}$ (proposed length suitable for any topology)
- From Cole_01a_0512_optx.pdf the relative cabling costs at CCL:
- 200m 2-f OS2 single-link channel $=1.25$
- 200m 8-1 OS2 single-link channel = 5
- 200m 2-f OS2 double-link channel = 1.75
- 200m 8-1 OS2 double-link channel =
- Total channel costs:

- LR4 single-link $=1.25+2 \times 2 \mathrm{~K}$
- PSM4 single-link $=1 \begin{array}{l}5 \\ \text { - LR4 double-link }\end{array}=1.75+2 \times \mathrm{K}$
- PSM in your
- PSM4 double-link $=$
K value to

> normalization cost factor = unity cabling cost from Cole_01a_0512_optx.pdf *

Single-link channel (SLCH)

Fiber Type	$\mathbf{1 0 0 m}$	$\mathbf{3 0 0}$	$\mathbf{5 0 0 m}$
8f OM4 MMF	5	9	13
8f OM3 MMF	4	7	10
8f OS2 SMF	4	6	8
2f OS2 SMF	1	1.5	2

* This is different normalization than used in Kolesar Kalculator

Q \& A

[^0]: * This approach is suitable for simple cases such as comparing two PMDs. The Kolesar Kalculator is recommended for more complex analysis such as total solution set cost analysis.

