Summary of MPN Calculations Jointly Investigated

David Cunningham \& Petar Pepeljugoski

 $4^{\text {th }}$ July 2012
Comparison of the Non Normalised Standard Deviation of MPN For Two Different Tc Values With Link Model Pulse Shapes: 000100 and 0101010 Patterns

Time, U.I.

Link With ISI Eye

Time, U.I.

Standard Deviation Of MPN: 0001000 Pattern

- Agrawal's model, and the spreadsheet model, assume 0101010 patterns are worst case
- The calculation also assumes k is constant for all patterns and edges
- For an isolated one, at eye centre ($\mathrm{t}=0$), σ_{mpn} has very little dependence on Tc (this is expected)
- But, at previous and next bit sampling times $[t=(1,-1)], \sigma_{m p n}$ does have a dependence on Tc
- Since the spreadsheet calculates $\sigma_{m p n}$ based on 0101010 patterns only it does not account for the large $\sigma_{m p n}$ contribution at $t=+1$ and -1 due to isolated ones or patterns like 0000111 etc.,

Comparison of the Non Normalised Standard Deviation of MPN For Two Different Tc Values With Link Model Pulse

 Shapes: 00001111 Pattern

Time, U.I.

Time, U.I.

- The $\sigma_{m p n}$ due to a 00001111 pattern is plotted
- The calculation assumes k is constant for all patterns and edges
- For the current bit, the optimum sampling time is $\mathrm{t}=0$
- For links with ISI the worst case pattern may be transitions from a string of zero's or transitions from a string of one's, not 0101010 as assumed by the link model

Ratio of the Non Normalised Standard Deviation of MPN of 00001111 and 0001000 patterns as a Function of Tc.

- The ratio has a trend and magnitude that is similar to that of Pisi.
- Assuming k is constant throughout patterns and edges $\sigma_{m p n}$, per the spreadsheet model, should be multiplied by the value of the ratio plotted in the graph

