1300nm Optics for Short Reach SMF Application

Jon Anderson, Opnext Kiyo Hiramoto, Opnext

Next Gen 100GbE Optical SG, Atlanta, November 2011

Introduction

- At the Chicago, 2011 meeting of the Next Gen 100GbE Optical SG, alternative Single Mode technology was identified as a key area to be addressed.
- This contribution explores technical feasibility of 4ch x 25G 1310nm optical device technology for short reach SMF (< 2 km) and extended reach MMF (< 300m) applications.</p>
- Characteristics of transceiver power consumption, module form factor and relative cost are analyzed.

Focus of Proposal for 4ch x 25G Optical Interface

Standard	Fiber	MUX	2011	2012	2013-	Comments	
LR4 10km	SMF	WDM	CFP Cooled -EML	CFP2 Cooled -DML	CFP4 Cooled-DML	Density Cost	
nR4 (1) ~2km?	SMF	WDM			CFP4 Low power consumption (Pc) DML	Data Center	
nR4 (2) ~550m?	SMF	parallel			CFP4 Surface emitting 1.3µm DML	Data Center	
SR4+ >300m?	MMF	parallel			CFP4 Surface emitting 1.3µm DML	Data Center New MMF	
SR4 60~100m	MMF	parallel			CFP4 VCSEL 850nm +EDC	Data Center	
1 Nov 2011 anderson_(1_1111		

Objectives and Approaches

nR4 Proposal

 Reduction of number of components is key to achieve the lowest cost solution for data center application.

Туре	Fiber type	length	LD	Isolator	O-MUX deMUX	TEC	Opt. coupling
CFP	SMF	10 km	Cooled- EML	Req.	Req.	Req.	Active
CFP2/ CFP4	SMF	10 km	Cooled- DML	Req.	Req.	-	Active
<u>nR4</u> (WDM)	SMF	2 km?	Low Pc integrated- DML	No ?	Req.	-	Active
nR4 (Parallel)	SMF	550m?	Surface emitting- DML	No ?	-	-	Active
SR4+ (Parallel)	New MMF	300m?	Surface emitting- DML	-	-	-	Passive
SR4 (Parallel)	MMF	100 m	VCSEL	EDC/ FEC	-	-	Passive

Low Pc operation by TEC-free uncooled DML

 Low power consumption enabled by TEC-free 25-Gb/s Uncooled DML with CWDM grid using InGaAlAs-QW material system with Improved High-Temperature keeping Static/Dynamic Performance

 Uncooled DML is most promising approach to enable 2.5W CFP4.

• : Achievable with existing technology × : Not feasible in near future Ref: T. Fukamachi et. al., ECOC2009, 8.1.5, (2009)

Target application			EA	DML				
		Cooled	Uncooled	Cooled	Uncooled			
CFP2	8W	0	_	0	_			
CFP4	4W	TLD=55°C Vmod=1V ILD=40mA	Vmod=1V ILD=50mA	New Driver TLD=55°C Ibias=60mA	New Driver Ibias=70mA			
	3.5W	×	Vmod=1V ILD=40mA	New Driver TLD=55°C Ibias=50mA	New Driver Ibias=60mA			
	2.5W	×	×	×	New Driver Ibias=30mA			
4 1 1 4	. 0044			4				

1 Nov 2011

Prototype 4 x 25G transceiver

Foot print: 144 x 78 mm² Power: 30W

Foot print : 14 x 9 mm² (1/100) Power: 2W (1/15)

Ref: T. Takemoto et al., ECOC 2011, Th.12.B.5 (2011). A part of this work was performed under management of the PETRA supported by NEDO. 1 Nov 2011 anderson 01 1111

Prototype 4 x 25G transceiver internal view

Surface mount with passive alignment enables low cost module.

Surface emitting DFB LD

- Lens Integrated Surface Emitting Laser (LISEL)
- 1.3μm operation with low Ith (~15 mA @85°C)
- High speed (25Gb/s) up to 100 °C
- Surface emitting/ Flip-chip mount

Ref: K. Adachi et al., J. Lightwave Tech. 29, 2899 (2011) *A part of this work was performed under management of the PETRA supported by NEDO.* 1 Nov 2011 anderson 01 1111

Measurement of SMF transmission

Four-wavelength 25-Gb/s 10-km error-free transmission (minimum received power: -11 dBm after 10-km SMF transmission)

Measurement of MMF transmission

110-m MMF error-free transmission @ BER of 10-12

<u>25-Gb/s eye diagram</u>

Used GI MMF : 1444 MHz km @ 1.3 μ m

Received optical power (dBm)

Ref: Y. Lee et al., ECOC 2011, We.10.P1.57 (2011) *A part of this work was performed under management of the PETRA supported by NEDO.* 1 Nov 2011 anderson_01_1111

MMF Dispersion Penalty Improvement

Calculated dispersion power penalties for various MMFs with different modal bandwidths and for various wavelengths.

(*) Solid lines: 4500MHz · km MMF, Dashed lines: 10000MHz · km MMF

Relative Cost Analysis

Туре	Fiber	length	TOSA			LDD	O-MUX	Opt.	Relative cost
	type		LD	Isolator	TEC			coupling	(TOSA+LDD+O- Mux)
CFP	SMF	10 km	Cooled EML	Req.	Req.	GaAs	Req.	Active	2.0
CFP2/ CFP4	SMF	10 km	Cooled- DML	Req.	Req.	SiGe	Req.	Active	1.0
<u>nR4</u> (WDM)	<u>SMF</u>	<u>2 km?</u>	Low Pc integrate d-DML	<u>No</u> <u>?</u>	<u>No</u>	<u>CMOS</u>	<u>Req.</u>	<u>Active</u>	0.4
nR4 (Parallel)	SMF	550m?	Surface emitting- DML	No <u>?</u>	<u>No</u>	<u>CMOS</u>	No	Active	0.15
SR4+ (Parallel)	New MMF	300m?	Surface emitting- DML	<u>No</u>	<u>No</u>		<u>No</u>	Passive	<0.15
SR4 (Parallel)	MMF	100 m	4-VCSEL	EDC	<u>No</u>		<u>No</u>	Passive	

Summary

- Technical feasibility of 1310nm optical device for short reach SMF (< 2 km) and extended reach MMF (< 300m OM4-like bandwidth) is demonstrated.
- Relative cost analysis indicates significant cost reduction in transmitter chain may be possible.
- Propose SG to study 1310nm optical device specifications in order to lower cost, power consumption and size of optical transceiver for nR4 application:
 - 1. Optical specification relaxation of 100GBASE-LR4; wavelength grid, ER, mask, etc.
 - 2. Feasibility of parallel SMF reachs beyond 550m.
 - 3. New MMF to achieve -300m reach using 1310nm surface emitting LD.

End of Contribution

Thanks!