

Information Input about 2-km/ 10-km Applications and Technologies for Link-Budget Increase

Shuto Yamamoto, Masahiro Nada NTT Corporation

IEEE802.3 Interim meeting, Long Beach, Jan. 2019

Overview

- Scope of discussion
- Example of 2-km and 10-km applications in telecomcarrier NW
- Example of technologies for link-budget increase

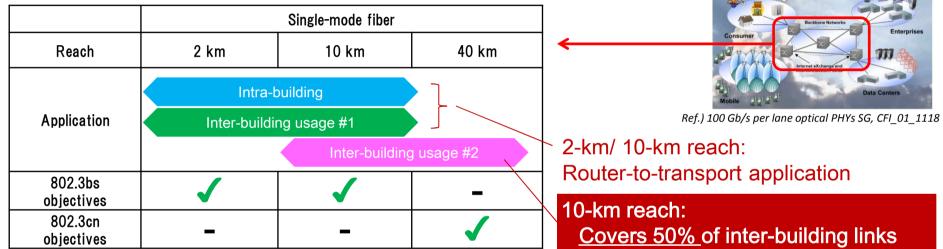
Discussion scope

Transmission distance: 2km, 10km

Transmission capacity: 100G, 400G

Ref.) 100 Gb/s per lane optical PHYs SG, CFI_01_1118

	Lanes	500 m	2 km	10 km	20 km	40 km	Up to 80km
1000BASE-	1		\\ LX	LX10 / LH		EX	ZX
10GBASE-	11			LR		ER	ZR
25GBASE-	1			LR		ER	
40GBASE-	4	PSM4		LR4		ER4	
	1	22	\FR\				
50GBASE-	1		FR\	LR		ER	
	10		10X10\				
100GBASE-	4	PSM4	CWDM4 / CLR4	LR4 / 4WDM-10	4WDM-20	ER4 / 4WDM-40	
	1	DR					"ZR"
200GBASE-	4		FR4	LR4		ER4	
	8		FR8	LR8		ER8	
400GBASE-	4	DR4		v			
	1						"ZR"



Example of 2-km and 10-km applications

2-km and 10-km reach Interfaces are used for router-to-transport connection and router-to-router direct connection.

The Ethernet Eco-System Today

Intra-building usage 2 km and 10 km

O NTT

L2-SW

400GE

Transport

System

L2SW/ Router to long-haul

transport system

Long haul

NW

O NTT

L2-SW

40**0**GE

Transport

System

Inter-building usage #1 Inter-building usage #2 2 km and 10 km 10 km and 40 km L2SW/ Router to long-haul transport system Direct connection without longhaul transmission system O NTT O NTT 40**0**GE 40**0**GE O NTT O NTT O NTT O NTT Long haul 400GE **Fransport Transport** L2-SW L2-SW NW System System

Necessity of link-budget increase

- 100G/lane PAM4 requires twice the baudrate compared to 802.3cd or 802.3bs, and it decreases sensitivity in principle.
- Less sensitivity makes link budget decrease.

Higher-sensitivity receiver or higher-power transmitter is important for link-budget increase.

802.3cd/ 802.3bs

1 x **50G PAM4** 2km

1 x **50G PAM4** 10km

4 x **50G PAM4** 2km

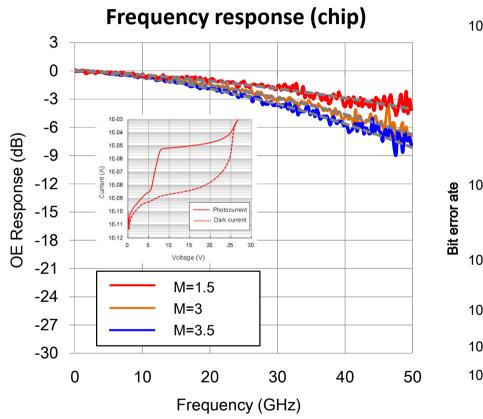
4 x **50G PAM4** 10km

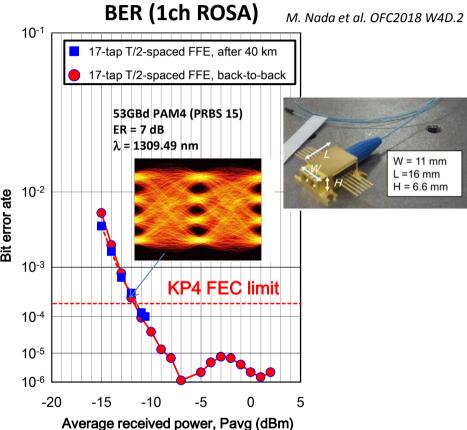
This Study Group

50G to 100G

1 x <u>100G PAM4</u> 2km

1 x **100G PAM4** 10km


200G to 400G 4 x **100G PAM4** 2km


4 x **100G PAM4** 10km

50-Gbaud APD-ROSA

- Vertical illumination structure (Active area: 14 um)
- Over 30-GHz f3dB for M = 3 (1.5 A/W)
- Minimum receiver sens.: -11.47 dBm after 40-km SMF transmission of which
 CD is -37 ps/nm

Summary

This presentation input information about...

- Example of 2-km and 10-km applications in telecomcarrier NW (intra- & inter-building usages)
- Example of technology for link-budget increase (50-Gbaud APD)

Thank you

