Towards a 400GBASE-LR4 Baseline

2019-03-13
David Lewis, Lumentum

As updated based on comments at meeting

Supporters

David Chen, AOI
John Johnson, Broadcom
Brian Welch, Cisco
Pirooz Tooyserkani, Cisco
Jonathan King, Finisar
Jonathan Ingham, Foxconn Interconnect Technology
Ryou Okabe, Fujitsu Optical Components
Hideki Isono, Fujitsu Optical Components
Jim Theodoras, HG Genuine
Kevin Zhang, IDT
Hai-Feng Liu, Intel
Jeffery Maki, Juniper Networks
Thananya Baldwin, Keysight Technologies
Jerry Pepper, Keysight Technologies
Kohichi Tamura, Lumentum
Justin Abbott, Lumentum
Tom Palkert, Molex
Kees Propstra, MultiLane, Inc.
John Wang, Nokia
Rang-Chen Yu, Sifotonics Technologies

Overview

- This presentation describes a set of values for the Study Group adopted objective:
- Define a four-wavelength 400 Gb/s PHY for operation over SMF with lengths up to at least 10 km
- Based on $100 \mathrm{~Gb} / \mathrm{s}$ PAM4 signaling on each of four CWDM wavelengths
- Relies on the FEC in 400GBASE-R PCS layer.

Block Diagram

Position in IEEE 802.3 Ethernet Model

400GMII = $400 \mathrm{~Gb} / \mathrm{s}$ MEDIA INDEPENDENT INTERFACE LLC = LOGICAL LINK CONTROL
MAC = MEDIA ACCESS CONTROL
MDI = MEDIUM DEPENDENT INTERFACE PCS = PHYSICAL CODING SUBLAYER

PHY = PHYSICAL LAYER DEVICE
PMA $=$ PHYSICAL MEDIUM ATTACHMENT
PMD $=$ PHYSICAL MEDIUM DEPENDENT
FR4 = PMD FOR SINGLE-MODE FIBER -2 km LR4 = PMD FOR SINGLE-MODE FIBER - 10 km

Transmit Characteristics

Description	400GBASE-LR4	Unit
PAM4 Signaling rate, each lane (range)	$53.125 \pm 100 \mathrm{ppm}$	GBd
Lane wavelengths (range)	1264.5 to 1277.5	$n m$
	1284.5 to 1297.5	
	1304.5 to 1317.5	
	1324.5 to 1337.5	
Side-mode suppression ratio (SMSR), (min)	30	dB
Total average launch power (max)	10.0	dBm
Average launch power, each lane (max)	4.0	dBm
Average launch power, each lane ${ }^{\text {a }}$ (min)	-2.8	dBm
Outer Optical Modulation Amplitude (OMA outer $^{\text {) , each lane (max) }}$	4.2	dBm
Outer Optical Modulation Amplitude (OMA outer $^{\text {) , each lane }}{ }^{\text {b }}$ (min)	0.2	dBm
Difference in launch power between any two lanes (0MA ${ }_{\text {outer }}$) max	4	dB
Launch power in OMA ${ }_{\text {outer }}$ minus TDECQ, each lane (min): for extinction ratio $\geq 4.5 \mathrm{~dB}$ for extinction ratio $<4.5 \mathrm{~dB}$	$\begin{aligned} & -1.2 \\ & -1.1 \\ & \hline \end{aligned}$	dBm
Transmitter and dispersion penalty eye closure for PAM4 (TDECQ), each lane (max)	3.9	dB
TDECQ - 10* $\log _{10}\left(C_{e q}\right)$, each lane (max) ${ }^{\text {d }}$	3.9	dB
Average launch power of OFF transmitter, each lane (max)	-20	dBm
Extinction ratio (min)	3.5	dB
Transmitter transition time (max)	17	ps
RIN_{156} OMA (max)	-136	
Optical return loss tolerance (max)	15.6	dB
Transmitter reflectance ${ }^{\text {c }}$ (max)	-26	dB

IEEE 802.3 $100 \mathrm{~Gb} / \mathrm{s}$ per lane optical PHYs
study group - March 2019

Transmitter compliance channel (for TDECQ test)

Type	Dispersion $^{\mathrm{a}}(\mathrm{ps} / \mathrm{nm})$		Insertion loss $^{\mathrm{b}}$	Optical return loss $^{\mathrm{c}}$	Max mean DGD
	Minimum	Maximum		Minimum	15.6 dB
400GBASE-LR4	$0.2325^{*} \lambda^{*}\left[1-(1324 / \lambda)^{4}\right]$				

Fiber optic cabling (channel) characteristics

Description	400GBASE-LR4	Unit
Operating distance (max)	10	km
Channel insertion loss ${ }^{\mathrm{a}, \mathrm{b}}$ (max)	6.3	dB
Channel insertion loss (min)	0	dB
Positive dispersion ${ }^{\mathrm{b}}$ (max)	33.5	$\mathrm{ps} / \mathrm{nm}$
Negative dispersion $^{\mathrm{b}}$ (min)	-59.5	$\mathrm{ps} / \mathrm{nm}$
DGD_max $^{\mathrm{c}}$	10	ps
Optical return loss (min)	$21-22$	dB
${ }^{\text {a }}$ These channel loss values include cable, connectors and splices.		
${ }^{\text {b }}$ Over the wavelength range 1264.5 to 1337.5 nm.		
c Differential Group Delay (DGD) is the time difference at reception between the fractions of a pulse that were transmitted in the two principal states of polarization of an optical signal. DGD_max is the maximum differential group delay that the system must tolerate.		

Optical fiber and cable characteristics

Description	Value	Unit
Nominal fiber specification wavelength	1310	nm
Cabled optical fiber attenuation (max)	0.47^{a} or 0.5^{b}	$\mathrm{dB} / \mathrm{km}$
Zero dispersion wavelength $\left(\lambda_{0}\right)$	$1300 \leq \lambda_{0} \leq 1324$	nm
Dispersion slope (max) $\left(\mathrm{S}_{0}\right)$	0.093	$\mathrm{ps} / \mathrm{nm}^{2} \mathrm{~km}$
a b The $0.47 \mathrm{~dB} / \mathrm{km}$ attenuation for optical fiber cables is derived from Appendix I of ITU-T G.695. The $0.5 \mathrm{~dB} / \mathrm{km}$ attenuation is provided for Outside Plant cable as defined in ANSI/TIA 568-C.3.		

Receive Characteristics

Description	400GBASE-LR4	Unit
PAM4 Signaling rate, each lane (range)	$53.125 \pm 100 \mathrm{ppm}$	GBd
Lane wavelengths (range)	1264.5 to 1277.5	$n m$
	1284.5 to 1297.5	
	1304.5 to 1317.5	
	1324.5 to 1337.5	
Damage threshold, each lane (min) ${ }^{\text {a }}$	5.0	dBm
Average receive power, each lane (max)	4.0	dBm
Average receive power, each lane ${ }^{\text {b }}$ (min)	-9.1	dBm
Receive power, each lane (0MA ${ }_{\text {outer }}$) (max)	4.2	dBm
Difference in receive power between any two lanes ($\mathrm{OMA}_{\text {outer }}$) (max)	4.14 .6	dB
Receiver reflectance (max)	-26	dB
Receiver sensitivity ($\mathrm{OMA}_{\text {outer }}$), each lane ${ }^{\text {c (max) }}$	$R S=\max (-6.6, S E C Q-8.0)$	
Stressed receiver sensitivity ($\mathrm{OMA}_{\text {outer }}$), each lane ${ }^{\text {d }}$ (max)	-4.1	dBm
Conditions of stressed receiver sensitivity test:		
Stressed eye closure for PAM4 (SECQ), lane under test	3.9	dB
SECQ - 10* $\log _{10}\left(C_{\text {eq }}\right)$, lane under test (max)	3.9	dB
OMA ${ }_{\text {outer }}$ of each aggressor lane	$\bigcirc 0.5$	dBm

Illustrative Link Power Budget

Description	400GBASE-LR4	Unit
Power budget (for max TDECQ)	10.7	
for extinction ratio $\geq 4.5 \mathrm{~dB}$	10.8	dB
for extinction ratio $<4.5 \mathrm{~dB}$	10.0	km
Operating distance	6.3	dB
Channel insertion loss ${ }^{\mathrm{a}}$	See Table xx	dB
Maximum discrete reflectance	4.4	
Allocation for penalties ${ }^{\mathrm{b}}$ (for max TDECQ)	4.5	dB
for extinction ratio $\geq 4.5 \mathrm{~dB}$		
for extinction ratio $<4.5 \mathrm{~dB}$	0	dB
Additional insertion loss allowed		

Table xx

Number of discrete reflectance above -55dB	Maximum value for each discrete reflectance
	400GBASE-LR4
1	-22 dB
2	-29 dB
4	-33 dB
6	-35 dB
8	-37 dB
10	-39 dB

Illustration of receiver sensitivity mask

Thanks

