10GBASE-T Objectives

Robert Hays- Intel Corporation Bruce Tolley-Cisco Systems Pat Thaler-Agilent Technologies Wael Diab-Cisco Systems David Law -3Com Corporation Jeff Warren- Independent George Zimmerman- SolarFlare Communications Ron Nordin - Panduit Corporation Joseph N. Babanezhad- Plato Labs, Inc. Tetsu Koyama - NEC Chris DiMinico - MC Communications Mike Bennett- Lawrence Berkeley National Laboratory •Modify current objectives:

-to establish link distances for cabling channels -to clarify EMC compliance

IEEE P802.3™
Sept 2003

July 2003 10GBASE-T Study Group Objectives

•Preserve the 802.3/Ethernet frame format at the MAC Client service interface

•Meet 802 Function Requirements, with the possible exception of Hamming Distance

- •Preserve min. and max. frame size of current 802.3 Std.
- Support full duplex operation only
- Support star-wired local area networks using point-to-point links and structured cabling topologies
- •To not support 802.3ah (EFM) OAM unidirectional operation
- •Support coexistence with 802.3af
- •Support Clause 28 auto-negotiation
- •Support a speed of 10.000 Gb/s at the MAC/PLS service interface

•Select copper media from ISO/IEC 11801:2002, with any

- appropriate augmentation to be developed through work of 802.3 in conjunction with SC25/WG3
- •Support 100 m over 4-connector structured 4-pair, twisted-pair copper cabling

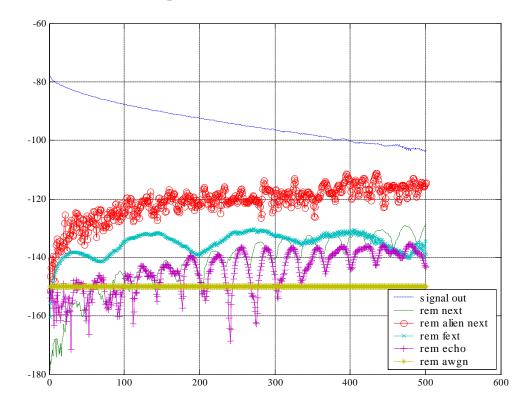
- Preserve the 802.3/Ethernet frame format at the MAC Client service interface
- Meet the requirements of IEEE Std 802-2001
- Support a BER objective of 10E-12
- Preserve minimum and maximum frame size of the current 802.3 standard.
- Support full duplex operation only
- Support a speed of 10.000 Gb/s at the MAC/PLS service interface
- To not support 802.3ah (EFM) OAM unidirectional operation
- Support coexistence with 802.3af
- Support Clause 28 auto-negotiation

- Support star-wired local area networks using point-to-point links and structured cabling topologies
- Select copper media from ISO/IEC 11801:2002, with any appropriate augmentation to be developed through work of 802.3 in conjunction withSC25/WG3
- Support operation over 4-connector structured 4-pair, twisted-pair copper cabling
- Define a single 10 Gb/s PHY which support links of:
 - At least 100 m on four-pair Class F balanced copper cabling
 - At least 55 m to 100m on four-pair Class E balanced copper cabling
 - At least 45 m to 100m on four-pair Class D balanced copper cabling
- Meet CISPR/FCC Class A

Supporting Slides

- Support star-wired local area networks using point-to-point links and structured cabling topologies
- Select copper media from ISO/IEC 11801:2002, with any appropriate augmentation to be developed through work of 802.3 in conjunction withSC25/WG3
- Support operation over 4-connector structured 4-pair, twisted-pair copper cabling
- Define a single 10 Gb/s PHY which support links of:
 - At least 100 m on four-pair Class F balanced copper cabling
 - At least 55 m to 100m on four-pair Class E balanced copper cabling
 - At least 45 m to 100m on four-pair Class D balanced copper cabling
- Meet CISPR/FCC Class A

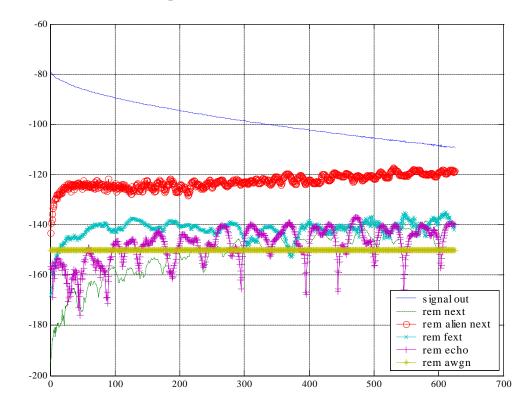
Capacity and Margin vs. Cabling length


- Model Assumptions:
 - Cabling AdHoc 4-connector models
 - IL and ELFEXT scaled for length
 - No ANEXT mitigation assumed
 - -150 dBm/Hz background noise
 - 55 dB RL Cancellation
 - 40 dB NEXT, 25 dB FEXT cancellation
 - Flat TX spectrum across bandwidth

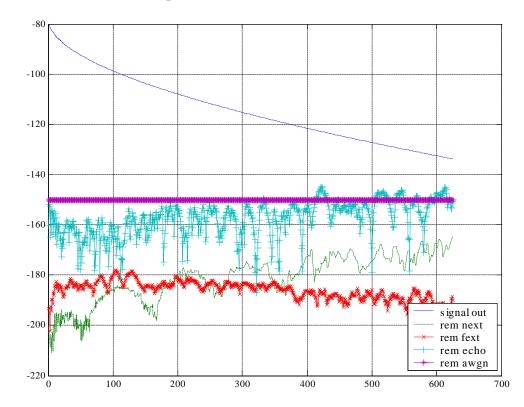
Capacity and Margin vs. Cabling length

- Capacity 18-20 Gbps used as metric for feasibility (roth_1_0503)
- Implementation metric:
 - PAM-10 DFE margin with example code (jones_2_0103 slide 14)
 - Detailed time-domain simulations shown for this case, including cancellation to levels shown
- Matlab code available for use with models from cabling adhoc

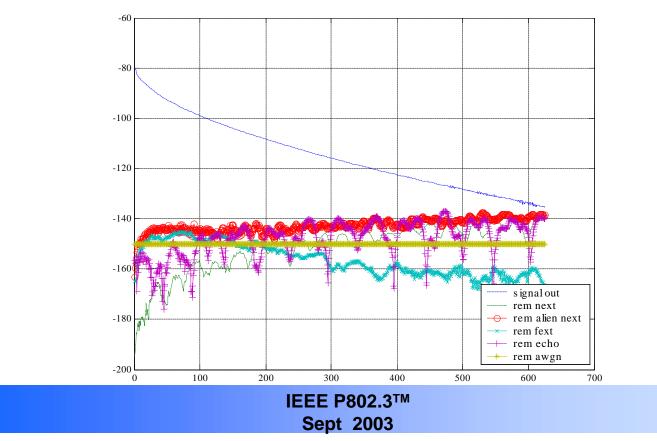
Class D/Cat 5e UTP: 45 meters Capacity & Margin


- Capacity > 18.0 Gbps
- >3.8 dB PAM-10 margin at 1e-12 BER

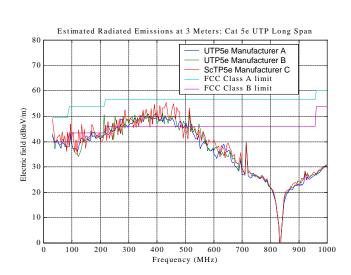
IEEE P802.3™	
Sept 2003	


Class E/Cat6 UTP: 55 meters Capacity & Margin

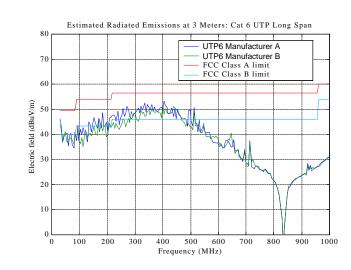
- Capacity > 19.8 Gbps
- >3.4 dB PAM-10 margin at 1e-12 BER


Class F/Cat7: 100 meters Capacity & Margin

- Capacity > 28.6 Gbps
- > 16 dB PAM-10 margin at 1e-12 BER


Class E/Cat6 ScTP: 100 meters Capacity & Margin

- (ref cohen_1_0703)
- Capacity > 20.6 Gbps
- >7 dB PAM-10 margin at 1e-12 BER



EMC Compliance: Class D/Cat5e & Class E/Cat6 Cabling

- References: wjones_2_0103 slide 10, lcohen_1_0903
- Class D & E cabling systems can meet FCC class A emissions over 500MHz BW
 - Augmented specifications will be useful in guaranteeing this

Class D

Class E

Estimating ADC Power Consumption

• Extrapolating from commercial silicon, as has been done in previous presentations, yields high estimates

Sample of available technology:

AD12400	10.3 ENOB	400Msps	7W
MAX108	7.5 ENOB	1500Msps	6.5W
TC1200	8.0 ENOB	1000Msps	5.5W

- Extrapolation yields (4 pair) x (5W/ADC) = 20W
- However, the same approach applied to 1000BASE-T:
 - Sample of commercial 8 bit ADC silicon:

AD9054A	8 bit	200Msps	640mW
AD9480	8 bit	250Msps	425mW
ADC08200	8 bit	200Msps	210mW

• Yields erroneous result of (4 pair) x (425mW/ADC) = 1.7W

IEEE P802.3™
Sept 2003

Estimating ADC Power Consumption

- One example of a more efficient ADC approach
 - Time Interleaved ADC Array

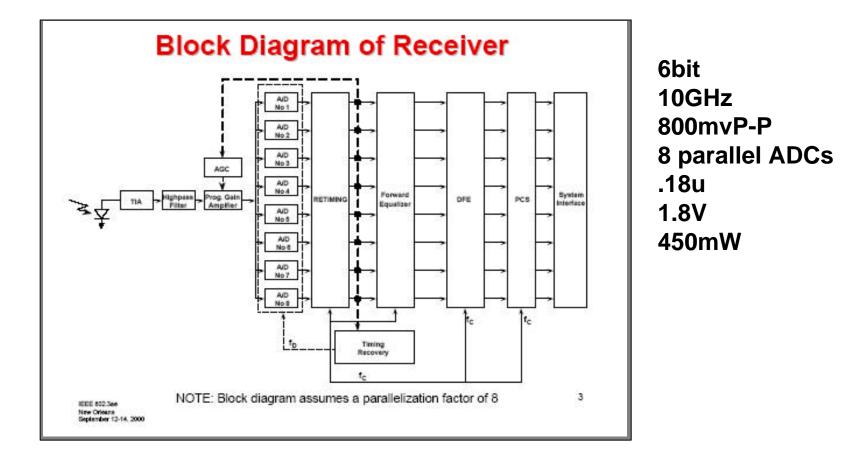
The technology has been presented within IEEE

Time Interleaved Converter Arrays

Black, W.C.; Hodges, D.A. Solid-State Circuits, IEEE Journal of, Volume: 15 Issue: 6, Dec 1980 Page(s): 1022-1029

DSP Based Equalization for Optical Channels

O Agazzi, V Gopinathan, K Parhi (Broadcom); K Kota (Cicada); A Phanse (National) September 2000, IEEE 802.3ae http://www.ieee802.org/3/ae/public/sep00/agazzi 1 0900.pdf


A 900MS/s 6b Interleaved CMOS Flash ADC

Yu, B.; Black, W.C., Jr Custom Integrated Circuits, 2001, IEEE Conference on, 6-9 May 2001 Page(s): 149-152

IEEE P802.3 [™] Sept 2003

Example of Time Interleaved ADC

•"DSP Based Equalization for Optical Channels" September 2000

Power Estimates for Time Interleaved ADC

Sample of available technology:

nAD10120-13a	10bit	120Msps	90mW	new
MAX1449	9.3 ENOB	105Msps	157mW	1 yr old
AD9215-105	10bit	105Msps	175mW	1 yr old

• Achievable ADC power *today*:

 $(8 \text{ ADC / pair}) \times (90 \text{ mW / ADC}) \times 4 \text{ pairs} < 2.88 \text{W}$

• Process advances should improve this to < 1.5W by 2005

IEEE P802.3™	
Sept 2003	

Power Consumption & Complexity

- Based on an existing detailed design, we estimate:
 - 1.5 TOPs computation (1.5X Quad 1000BASE-T)
 - 6M Gates DSP
 - PAM-10 computation
 - Cancellation per simulations
 - Analog components & A/D converters in CMOS
- 90nm process mature & 65nm technology as commercial in 2006 at ASIC foundries
- Based on silicon in the lab today:
 - we estimate power for 10GBASE-T in 2006 to be
 <7W with 90nm technology

- Support star-wired local area networks using point-to-point links and structured cabling topologies
- Select copper media from ISO/IEC 11801:2002, with any appropriate augmentation to be developed through work of 802.3 in conjunction with SC25/WG3
- Support operation over 4-connector structured 4-pair, twisted-pair copper cabling
- Define a single 10 Gb/s PHY which support links of:
 - At least 100 m on four-pair Class F balanced copper cabling
 - At least 55 m to 100m on four-pair Class E balanced copper cabling
 - At least 45 m to 100m on four-pair Class D balanced copper cabling
- Meet CISPR/FCC Class A