Upstream power budget proposal for PRX30

Ken-Ichi Suzuki Akihiro Otaka

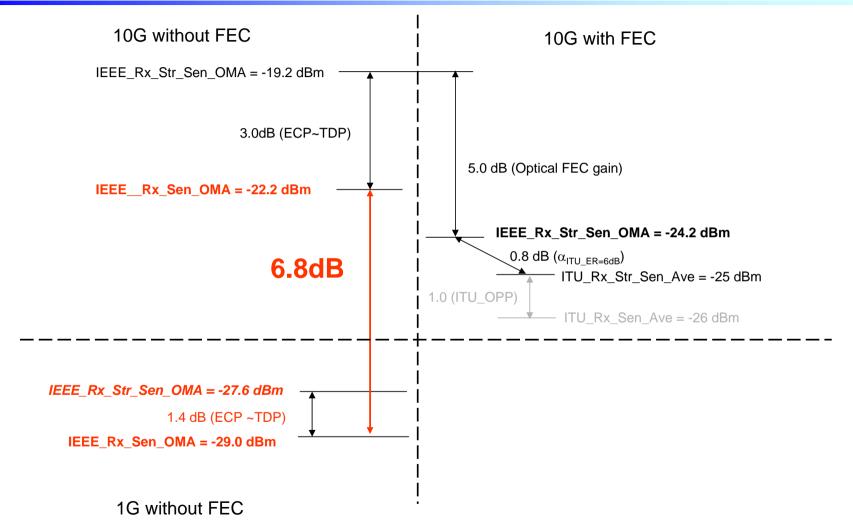
December 2007 NTT Access Network Service Systems Laboratories, NTT corporation

Consideration of upstream power budget for PRX30

- •NTT has already proposed IEEE_Rx_Str_Sen_OMA as -27.6 dBm. So I think we should use this value.
- •If PRX_U3 use a DFB-LD, optical path penalty is estimated as 0.5 dB that is the same as that of Class B+. Therefore, TDP and ECP (eye closure penalty) should be small compared with those of PR20 (1.8 dB and 1.9 dB). So I think TDP and ECP should be reduced to 1.4 dB (~ ECP_PR20-(OPP_PR20-OPP_PRX30)).
- •If the sensitivity difference between 10G and 1G is less than 6.8 dB, we can use the APD parallel technology as a dual rate receiver. In my proposal, the sensitivity (IEEE_Rx_Sen_OMA (Ideal sensitivity)) difference between 1G and 10G is 6.8 dB.

Upstream power budget proposal for PRX30

No.	Description	PRX_U3 (ONU)	PRX_D3 (OLT)
1	Minimum extinction ratio (ITU_ER)	6 dB	-
2	Eye closure penalty (ECP)(Note 1)	-	1.4 dB
3	TDP (Note 1)	TBD (or 1.4 dB)	-
4	Ch.loss_Min - Ch.loss_Max	15 - 29 dB	
5	Power_range	5 dB	-
6	IEEE_Rx_Str_Sen_OMA	-	-27.6 dBm
7	IEEE_Rx_Sen_OMA	-	-29.0 dBm
	(IEEE_Rx_Str_Sen_OMA –ECP)		
8	IEEE_Tx_OMA_min	1.4 dB	-
	(= IEEE_Rx_Str_Sen_OMA + Ch.loss_Max)		
9	IEEE_Tx_OMA_max	6.4 dBm	-
	(= IEEE_Tx_OMA_min + Power_range)		
10	Overload	-	-9.4 dBm
	(= ITU_Tx_max -Ch.loss_min)(Note 2)		


(Note 1) Sensitivity difference between IEEE_Rx_Str_Sen_OMA and IEEE_Rx_Sen_OMA(Ideal) that nearly equals to TDP value.

(Note 2) ITU_Tx_max(= IEEE_Tx_OMA_max - $\alpha_{ITU_ER=6dB}$), $\alpha_{ITU_ER=6dB}$ = 0.8 dB

Sensitivity (IEEE_Rx_Sen_OMA) difference between 1G and 10G

